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FOREWORD

The MATH/CHEM/COMP (MCC) meetings have started at the Inter-University Centre in
Dubrovnik in 1986 and soon have become a widely recognized forum to exchange the latest ideas
on combinatorial, topological and computational aspects of chemistry and physics. The above topics
have been presented through three out of six days of the MCC'99, namely at Sessions on Theory
and Applications of Mathematics in Chemistry, Computational and Experimental Chemistry, and
Computations in Chemistry and Physics. In order to keep the pace with the recent subjects of wider
interest to chemical and pharmaceutical community the Session of Drug and Vaccine Modelling has
been organized, as well as the Session on Combinatorial Chemistry and Combinatorics in
Chemistry. Beside that, the third day of the meeting has accommodated the Fifih Croatian Meeting
on Fullerenes.

These new trends, as well as traditional topics of the meeting are partially reflected in the present
issue of the Journal of Chemical Information and Computer Sciences. Other papers from the
meeting will appear as the special issues of journals Croatica Chemica Acta and Fullerene Science
and Technology.

The MCC meetings encompass also courses usually held in the afternoon sessions, but the
related materials are distributed only locally. However, the conference contributions are regularly
published, which up to now have resulted in 15 special issues in various international journals. The
papers presented at the MCC'97 have also appeared in this journal (and have been solicited by Ante
Graovac, Dejan Plav§i¢ and DraZen Viki¢-Topié¢), but remained scattered through its issues of the

year 1998. This time we have collected them in one issue, and special thanks for that go to Prof.

Milne, editor of the Journal of Chemical Information and Computer Sciences.
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Revised Manuscript

On the Relation between W'/W Index, Hyper-Wiener Index
and Wiener Number

Dejan Plavsié "® Nella Lers °, and Katica Serti¢-Bionda °
®The Ruder Bogkovié Institute, P.0.B. 1016, HR-10001 Zagreb,
| The Republic of Croatia
bFaculty of Chemical Engineering and Technology, University of Zagreb,

HR-10000 Zagreb, The Republic of Croatia

It is shown analytically that the W'/W index, the hyper-Wiener index and
the Wiener number are closely related graph-theoretical invariants for
acyclic structures. A general analytical expression for the hyper-Wiener

index of a tree is derived too.

1. INTRODUCTION

Properties of a molecule are a consequence of a co‘mplicated interplay of its
topology (atomic connectivity), metric characteristics (bond lengths, valence
and torsion angles) as also detailed dynamics of electrons and nuclei.’ Within
many classes of compounds, the variations of molecular metric and electronic
structure are small. Hence, changes of many of molecular properties in these
classes may be considered as only topology conditioned.®® Molecular topology
can be represented by a (molecular) graph being abstract, essentially non-
numerical mathematical objeot.m'15 in order to perform quantitative topology-

property/activity studies of molecules it is necessary to quantify the structural
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information contained in the corresponding graphs. The characterization of a
graph is usually carried out by means of graph invariants'© (topological’
indices'®).

The representation of a molecule by a topological index entails a
considerable loss of information concerning the molecular structure. Hence,
chemists are permanently in pursuit of novel topological indices which would
improve the graph-theoretical characterization of molecular structure and
enable to make better and easily interpretable regression models of topology-
property/activity relationships. In the framework of this effort Randié¢ has
recently put forward a novel bond additive molecular descriptor, the W'/W
index.'”"1® The index is the sum of graphical bond orders!7:18 of all edges in a
graph calculated by means of the Wiener number.!® He also tested the W'/W
index in the framework of the single variable linear regression model by
examining the van der Waals areas of heptanes”'zO and some 20 molecular
properties of octane isomers.2! The close resemblance in quality between the
regressions with the W'/W index as predictor variable and regressions based on
the hyper-Wiener index?° as well as on the Wiener number indicates that these
indices encode the very similar information on topology of acyclic structures.
We have investigated the intercorrelation of these three indices on heptane,
octane and nonane isomers and found in all cases high value of the coefficient
of determination (r>>0.996) and strong linear intercorrelation. The plot of the
W'/W index versus the hyper-Wiener index R for nonanes is illustrated in Figure
1. Such a behavior of these three indices hints that a formal relationship might
exist between them.

In this article we will diséuss the relationship between the W'/W index, the

hyper-Wiener index and the Wiener number for acyclic structures.




2. DEFINITIONS

Wiener Number. The Wiener number, W=W(G), of a connected

undirected graph G with N vertices is defined as'®

1 N
W = z (D); (1)
i=1 >

where (D)ij denotes the element in the i-th row and j-th column of the distance

matrix D of the graph G. The summation goes over all the entries above the
main diagonal of D. If G is a connected undirected acyclic graph (tree), T, with

N vertices the Wiener number can also be expressed as'®

w=) ¢, @)

i iy Vgl )
Coy = Xg, (N~ Xg) 15X <N -1

= i
= Xe Xe (3)

&j denotes the edge connecting vertices i and j of T. The summation in eq 2

goes over all edges in T. iXeij and leij in eq 3 denote the number of vertices of
T on the side of the vertex i and on the side of the vertex j of the edge ¢,
respectively.

Graphical Bond Order WeijNV. The graphical bond order Weij/\N of an

edge e;; of a connected undirected graph G is defined by'”'8

W(G‘eij)

We, /W = WG (4)




-4-

where W(G) is the Wiener number of G and W(G-eij) denotes the Wiener
number of the spanning subgraph G-eij obtained from G by deleting the edge
&jj- G-eij is connected if and only if G contains at least one ring and the edge &
is one of the edges making up ring(s). A disconnected G-eij has two
components, say G, and G, , and the Wiener index in this case is by definition

given by the expression'”:18

W(G-€) = W(G;) + W(Gy) (5)

W'/W Index. The W'/W index of a connected undirected graph G is defined
as:17.18

' 1
W/W = D W /W = WE D WiG-ey) ©

€jj €jj

where the summation goes over all edges of G.

Hyper-Wiener Index. The hyper-Wiener index R was recently introduced
by Randi¢ for an acyclic structure.?® The R index, R=R(T), of a tree T is defined

as

- r S
R(T) = pz Xprs X Prs (7)
rs

where p,¢ represents the path connecting vertices r and s of T. rXprs and SXprs

denote the number of vertices of T on each side of the path p.¢ , including r and

s, respectively. The summation runs over all paths in T. Note, if paths of length
one (edges) are the only paths taken into consideration, than eq 7 is reduced to
eq 2. The original definition was extended so as to be applicable for all
connected graphs.22 The hyper-Wiener index, R=R(G), of a connected graph G

with N vertices is defined as




1

1
R=7%

D [0y + ()] ®)
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3. RELATIONSHIP BETWEEN W/W INDEX, HYPER-WIENER INDEX
AND WIENER NUMBER

Let T be a connected undirected acyclic graph with N vertices and let &; be
an edge of T, see Figure 2. The graph T-eij obtained from T by deleting the
edge ej;has two components, T, and T, with IXeij and ’Xeij vertices,
respectively. Clearly, iXeij+ leij is equal to N. The Wiener number of the
spanning subgraph T-eij of T is smaller than the Wiener number of T due to the
absence of the contribution of the edge e; being equal to IXeij JXeij , and
decrease in contributions of the remaining edges. An edge of T-eij, say e,p
(see Figure 2.) makes a contribution to W(T-eij) equal to the difference between
the contribution of the corresponding edge in T to W(T), a‘Xeabbxeab, and the

product axeabjxeu. Hence, the difference between W(T) and W(T-g;) is given by

L . .
W(T) - W(T-¢y) = Xeij JXeij * JXeijz axeab+ lXeij Z dXecd ©)

€ahEE; €ed€Ep
on the condition that
(D)ia> (D)ip (10)
and
(D)ig> (D)jc (11)

a d : . .
Xeab ( Xecd) is the number of vertices of T, (T,) on the side of the vertex a (d)

of the edge e, (e.4). E; and E, denote the sets of edges of the components T,
and T,, respectively. The summation in the second (third) term on the right

hand side of eq 9 runs over all edges of the component T, (T,) of the graph




The graphical bond order WeijNV of the edge e; of T can be obtained by
dividing eq 9 by W(T):

o o | Z | .d _
eIJ/W 1 VV(?) ( Xei‘, Xe;j+ Xeij axeab+ Ixei] Xec 4 (12)
eab€E1 echEg

This quantity represents the "importance" of the edge 8j inT.

The W'/W index of T is the sum of graphical bond orders of all N-1 edges of

T:
| = 2 (%,
W/W=N-1-W ( eIJ unz X +
G €aheE,
i d
Xeijz Xecd> (13)
ecd€ Ep
By noting that
2( Xoy Xey + IX ”2 Koyt Xo Z Xed> 2R(T)-W(T)  (14)
Sij €aheE4 ecde Es

the relationship between the W'/W index, the hyper-Wiener index and the

Wiener number of T immediately follows:

2 R(T)
W(T)

W/W = N- (15)

Since 2R is equal to the sum of the (unnormalized) second moment of dlstance
D, and the Wiener number 22 the W'/W index can also be expressed as:

Dy(T)
wW(T)

‘W/W = N-1- _(1-"6)‘_"-'
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4. DERIVATION OF GENERAL EXPLICIT FORMULA FOR
HYPER-WIENER INDEX OF TREE

A closer examination of eqs 6 and 15 reveals that it is possible by means of
them to arrive at the general explicit formula for calculation of the hyper-Wiener

index of T. To wit, combining egs 6 and 15 one can write

Rm= (17)

where W' is the sum of the Wiener numbers of all the spanning subgraphs T-e
of T. It is well-known that the Wiener number can be calculated in a number of

ways.16'19'23’34 If one selects the route23

w=2,n'p (18)

where "p denotes the number of paths of length n in T, then the general explicit
formula for calculation of R(T) can be derived in a rather simple way.
The total number of paths of a given length n in the spanning subgraphs T-

e of T, "P, is given by the expression:
= B=(N-n-1)"p (19)
T-e

where npT . is the number of paths of length n in T-e, and the summation runs

over all the spanning subgraphs T-e of T.

W' of T is given by

n<N-

e
o]

iA
Z
L




Combining eqs 17, 18 and 20 one obtains:

n<N-1
RM =2 ), %+ (21)
=1

=)

To calculate the R index of T it is necessary and sufficient to have knowledge of
b 's of T. The number of paths of a given length nin T can be calculated either
by means of the recursive relation or using the general analytical expression for

"o in T.35 The recursive relation reads as:

"p= 2 vivi-2("'p)-"%p 5 n2s (22)
(D)j=n-2

where v; is the valence of the vertex i, and (D)j=n-2 denotes that the topological

distance between the vertices i and j is equal to n-2. The summation runs over
all the pairs of vertices of T separated by the paths of length n-2. The initial

conditions are

p=N-1 (23)

2p=132vi2-N+1 (24)

n-2+k
"= Z D™ -m-1+1) 2 Vivj +
m=1 (D)j=m
i<j
n-1
(-1)" (—2— Vivj - N+1> (25)

Note that 2 vivj = ¥ Vi2. The parameters k, s and t take the following values:
(D);=0 i




2 for n=1

k=<1 forn=2 (26)
0 for n=3
1 for' n= odd

s= (27)
0 for n=even

and

1 forn=1

t= (28)
0 forn=2

Combining eqgs 21 and 25 one obtains the general explicit formula for

calculation of the R index of T

n<N-1 n-2+k
'R(T)=—12— n+n{2(1m*snm1+t)2vv+

n= “=m
i<j

. )n<nT'12 vivj - N+1>} (29)

(D);j=0

where the parameters k, s and t take the values from eqs 26, 27 and 28,
respectively. The application of the formula is illustrated for the hydrogen
suppressed graph of 2,2,3,4-tetramethylpentane in Figure 3.

A special case of an acyclic graph is the path graph, P. Eq 29 in case of

P\ takes a rather simple form

n=N-1

AP == ) (P +n) (N-n) (30

n=1

whose summation gives the formula already derived by Lukovits.36
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Figure 1.

Figure 2.

Figure 3.
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FIGURE CAPTIONS

Plot of W/W vs R-102for nonanes. The regression equation and
statistical parameters are W'/W = -1.055(0.011)(R-102) +
6.899(0.023); n = 35; 2= 0.997; s = 0.026: F"> = 9507.

a) A connected undirected acyclic graph T. An edge of T is
denoted by e,
b) The spanning subgraph T-eij of T with components T, and T,

Calculation of the R index of the hydrogen suppressed graph of
2,2,3,4-tetramethylpentane. Numbers at each site represent the

corresponding graph-theoretical valences.
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Abstract

Due to the one-dimensional characteristic, the excitation of an electron in poly-
mers is self-trapped, and two excitons can be combined to form a biexciton.
This combination process is an important channel to forming the biexciton and
is accompanied by lattice distortion. By solving the dynamic equations, the
relaxation process of this combination is invesvtigauted7 where it is found that the

relaxation time is about 160 fs.
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I. INTRODUCTION

Conjugated polymers with nondegenerate ground states, such as polyparaphenyleneviny-
lene (PPV) and polyphenylquinoxaline (PPQ), are found to have excellent nonlinear optical
properties and can be used as the active luminescent layer in new polymer-based electrolumines-
cence LED devices [1]. The excited states, especially excitons and biexcitons play central roles
in these photophysics processes [2]. Recently it was proposed that the biexciton state possesses
a novel property — negative polarizability, where itsv induced dipole moment is in the opposite
direction to the external electrical field [3]. This is a straightforward way for the exciton to
absorb a photon and become a biexciton, but the efficiency of this two-photon process is low.
There is another channel to form the biexciton. The polymer chain is a quasi-one-dimensional
system, and due to strong coupling between electron and lattice motion, the electron excitation
must be accompanied with bond structure distortion. This self-trapping effect increases the
binding energy of the excited state [4]. As a result, the energy of a self-trapped biexciton is
lower than that of two separate excitons. Thus, two self-trapped excitons in one chain can
evolve to a single biexciton. Under photoexcitation, many excitons are generated, and in the
case of electroluminescence, the injection of charge carriers also produces many excitons. When
two moving excitons encounter each other, they combine into a biexciton, which is an important

channel for biexciton formation [5].

In this paper, the evolution of the combination is simulated by solving the dvnamic equa-

tions. From the evolution of the bond structure and electronic spectrum, it is found that the




relaxation time of the combination is about 160 fs.

II. MODEL AND METHOD

As usual, the SSH Hamiltonian [4] (modified by Brazovskii and Kirova [6]) is used to model

the polymer in its nondegenerate ground state, consisting of N lattice sites and NV electrons:

Hy = Z [to — a (tns1 — un) + (—1)"t] (at, Jans + Boc.)

n

P Y (= ) = K3 (s — ) (21)

Here u, is the displacement of the nth atom, a, , is the annihilation operator of an electron at
the nth atom, the nondegenerate ground state is depicted by t., and the final term is added to
avoid the collapse of the open chain with a finite length (7,8]. When an external electrical field

E is applied, the potential energy of electrons is

H, =¢eFE Z (na - N;_ la + un) ay JGns - (2.2)

We define the order parameter as ¢, = (—1)" u, and divide the total Hamiltonian into an
electron part H, and a lattice part,

K L
H({¢.})=Ho+ H, = H. + 5 (rtr+62) = K (614 (=1)Von) - (2.3)
For a certain lattice configuration {¢,} , we can diagonalize H.({#.}) to obtain the elec-

tronic energy spectrum {e;} and corresponding eigenstate |i). Then the total energy is

3




occu

E({¢n}) Zet 22 (fns1+ 6a)" — K (¢1 4+ (-1)Von) . (2.4)

Because the mass of an atom is much larger than that of an electron, we have been able to use

the adiabatic approximation [9]. The nth atom experiences a force

d2¢n 5E({¢n occu ,
famma = Z “+ K (b + 28+ bnma) = K (B + (=) )
(2.5)
By using the Hellman-Feynman theorem, we get
O¢; . .
a; =2 (=1 (nfi) (2 (n + 1) (1 = 8av) — 20 (n = 1) (1 = 601) + (nli) eE).  (2.6)

Taking a short interval 7 as the time step, the dynamic equations (2.5 ) can be solved
numerically. Step by step, we can simulate the dynamic evolution of the bond structure. The
period 7 of lattice vibration is about 4 x 104 s, and since the time step 7 must satisfy 7 < 7,
we choose 7 = 1 fs. The damping term is —Amdg¢/d¢, and A should be < 1/ [10,11]. The
results show that changes in A do not influence the main character of the relaxation process.

In our calculation, we have chosen the parameters according to the cis-polyacetylene,

to=25¢eV, te=-0.05¢eV, a=41¢cV/nm, K =125a

K =21 x10° eV/nm?, a=0.122 nm, m=13u, N =100.




III. RESULTS

To simulate the combination of two excitons into one biexciton, we take two excitons which
are close to each other as the initial lattice configuration (¢t = 0 in Fig. 2). For an exciton,
an electron is excited to the bottom of the conduction band (LUMO). For an biexciton, two
electrons with opposite spins are excited to tﬁe LUMO with two holes left in the HOMO. Figure
1 shows the evolution of the 50th energy level Eso under different electrical fields. At ¢ = 0,
Eso is the energy level of the lower gap state of the self-trapped exciton. As time passes,
it evolves into that of the self-trapped biexciton. Figure 2 shows the lattice configuration at
different times for E = 0.1 Mv/cm. As can be seen from these figures, when ¢ > 100 fs,

the change of lattice configuration becomes smaller and smaller, and finally converges.

From Figs. 1 and 2 it is seen that the relaxation time is about 160 fs, which is about the
same as that of the photoexcitation process. As a result of exciton combination, the energy of

the system decreases, and the binding energy of the biexciton is 0.77 V.
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Figure Captions

Fig. 1. Evolution of the energy level Esounder different electrical fields: £ = 0 and

E =01 Mv/cm.

Fig. 2. Evolution of the lattice configuration under £ = 0.1 Mv/cm : () t from 0 to 60

fs; (b) t from 80 to 100 fs; (c) t from 120 to 180 fs.
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PRECIPITATION AT EQUIVALENCE AND EQUILIBRIUM - A METHOD
FOR THE DETERMINATION OF EQUILIBRIUM CONSTANTS OF
REACTION BETWEEN MULTIDETERMINANT ANTIGEN AND SPECIFIC
POLYCLONAL ANTIBODIES

Biserka Pokrié
Ruder Boskovi¢ Institute, Zagreb, POB 1016, Croatia
e-mail: pokric@rudjer.irb.hr

A theoretical approach for the determination of the equilibrium constant, Ka, of the
reaction between a multideterminant antigen (Ag) and specific polyclonal antibodies
(Ab) forming the insoluble Ab/Ag immune complex, is derived. The constant can be
expressed as a function of the two accessible experimental parameters, the precipitating
concentration of the antigen and the Ab/Ag molar ratio. For this purpose Ab/Ag
immune complex must be prepared at equivalence and equilibrium between
precipitated and soluble species must be reached. The proposed method is
experimentally tested on the system human serum albumin (HSA) and polyclonal rabbit
antbodies. The Ab/Ag precipitates are prepared by the direct mixing of biological
fluids in which immunoreacting components naturally occur. Previous separation,
purification or labelling of immunoreacting components are not required. The
conditions for the precipitation of Ab/Ag complexes at equivalence, the stoichiometric
composition or the average number of Ab molecules bound to one Ag molecule, and
the solubility of the immunoprecipitating components, are determined by a rectangular
two-dimensional double immunodiffusion. Since the solubility determined under the
conditions of a double immunodiffusion is a result of the interaction of the global
diffusion of the precipitating components and particle growth kinetics, it mostly refers
to the dynamic conditions. In order to find the solubility under equilibrium conditions,
it is sufficient to determine the minimal factor by which the solutions of both
immunoprecipitating components should be diluted so that no precipitate is formed
upon their mixing at equivalence. The dilution factor is determined by a measurement
of the laser light scattering of the immunocrecipitating systems prepared with serially
diluted Ag and Ab solutions. ’
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INTRODUCTION

Affinity. specificity and concentration of an antibody (Ab) determine its usefulness
for analvtical. diagnostic and therapeutic purposes and are also implicated as important
factors in the immune response. Antibody affinity is defined as the atractive force
between an antigenic determinant (epitope) and the antibody combining site
(paratope). Accordingly to its definition, the affinity can be measured only when the
antigen (Ag) is a simple, well-defined substance such as a hapten. The determination of
the affinity of antibodies directed against a protein in this sense is impossible, because
of the multiplicity and heterogeneity of antigenic determinants. To describe quantitative
differences of the interactions between a multideterminant Ag and polvclonal Abs,
despite a lack of a precise thermodynamic and immunochemical meaning, the term
avidity was introduced. Avidity is the goodness of fit between more than one epitope
of the antigen and more than one site of the antibody. The rates-of dissociation, the
solubilities of Ab/Ag complexes precipitated at the optimum proportions, the
deviations from the linearity of the curve representing reciprocal concentrations of a
bound antigen vs. reciprocal concentrations of a free antigen, antigen binding
capacities, immunochemical titers, indices of avidities, as well as the data obtained by
measurements of 50% binding of antibodies by an antigen are related to the avidity.'”
However, the avidities are often expressed through the association constants, Ka,
which represent the equilibrium of association, ka, and dissociation, kd, rates of Ab/Ag
complexes. The difficulties in reaching equilibrium due to heterogeneous binding are
responsible that the application of the solid phase affinity methods for the
determination of Ka, should be taken with precautions. Despite of the simplicity of
these methods, such as an ELISA, various surface effects can cause errors in estimates
of either liquid or solid phase affinities and influence on the ranking of affinities.>*”

In this paper we propose a new approach to the determination of the equilibrium
constants of the reactions between multideterminant Ags and specific polyclonal Abs.
The method is based solely on the determinations of the concentration of soluble Ag in
equilibrium with insoluble Ab/Ag immune complex prepared at equivalence.

THEORETICAL CONSIDERATIONS

Equilibrium Constants of Polyclonal Antibodies Raised Against a
Multideterminant Antigen. An immune complex of the average composition AB, is
formed when one molecule of multideterminant antigen A reacts with n molecules of
the specific polyclonal antibodies B:

A-nB+« ABn

The average composition means that n should not necessary be an integer number.
In case that n is greater than unitv. a portion of the immune complex ABn may be
precipitated. In this case the equilibrium is reached when fully reversible reaction is
established between the precipitated complex ABn, (solid phase) and the species
remaining in the solution (solute phase):




ABn, <> ABn,+ A; + n B

The solute phase consists of the free components A, and B,. and components Asp
and B, bound in the soluble ABn, complex. The reversible reaction between soluble
immune complex and free species in solute phase. also exists under equilibrium
conditions :

ABn, <> A, +1n B, )

In the immunoprecipitating system prepared under equivalence conditions, the ratio
of molar concentrations of B and A components, n. is:

n =cB/cA 2

and is the same in the precipitated and soluble immune complexes and corresponds to
the ratio of free B and A species in the solute phase.

According to eq 1, the equilibrium constant of the primary Ab/Ag reaction in a
system prepared at equivalence and equilibrium is:

Ka' = cAop/(cAs cBSY) G)
By substitution of the ¢B by cA from eq 2, the equilibrium constant equation becomes:
Ka' = cAp/(n" A1) 4)

Ka' reflects the avidity of the antibodies, irrespective of the number of antibody
valences, ie, binding sites, involved in the reaction. In case that the multideterminant
antigen bears distinct antigenic determinants, each of them is able to react only with
one binding site on the molecule of the specific antibody. Since the antibody molecules
possess more than one binding site, the valency of antibodies should be taken into
account in order to calculate the equilibrium constant. For instance, the equilibrium
constant of the reaction involving bivalent antibodies belonging to IgG classes, reads
as:

InKa=InKa/2n (5)

Equivalence and Equilibrium Conditions. In case that the concentrations of the
antigen and antibody solutions are unknown. the equivalence conditions can be
determined by a rectangular two-dimensional double diffusion technique called the
"wo-cross” immunodiffusion. A detailed description of the two-cross experimental set-
up which enables an adequate solution of the Fick's second law of diffusion applied to
the immunoprecipitation in gels, is described elsewhere.®” Briefly, a "cross" consists of
four troughs cut at a right angle in a gel plate. The half-width of the trough is denoted
by h. The troughs of each cross are filled in alternate order with antigen solution
(component A) and immune serum (component B). In the second cross. the solutions
of both precipitating components are diluted by the same factor. d. The distances
between peaks of the precipitin lines in the direction of the diffusion of antigen, x, and
antibodies. y, are measured in both crosses at a same time. t. The volume ratio of the
solutions of the precipitating components required to ensure equivalence conditions
during the preparation and precipitation of immune complexes®, is given by:




vB/VA = ad® (6)
where

a=[(x’-x)y’-y)'"

b=’y - x ¥ )[(07 - x2) (0 - v2 )]

The subscript 1 and 2 refer to the parameters measured in the first and the second
cross, respectively.

So far, the two-cross immunodiffusion technique enables the direct determination of
the reciprocal precipitating titers (eqs 7 and 8) and the diffusion coefficients (eqs 9 and
10) of the reacting molecules. Precipitating titers PT are defined as the ratio of the
equivalent molar concentrations of the substance at the origin of diffusion, ¢y, and at
the point of the onset of precipitation, c,:

1/PTA = (W/x)) X e = cAy/cA, (7
1/PTB=(W/y) Ye¥=cB,/kcB, (8)
where:

W=h@2/m)"
X=x 2hd(x’-x)]"
Y=y 2ndiy’-y)]"?

The precipitating concentrations, ¢y, can be calculated from known both
precipitating titers and initial concentrations of the solution of the precipitating
components. In case that the initial concentrations of the antibody and antigen
solutions are unknown, they can be determined directly in crude biological fluids in a
manner described in details elsewhere.*’

The diffusion coefficients are obtained from the relations:

DA = 1/t [(x,°-%:°)/(4 In d) - h'/6] )
DB = 1/t [(y,%-y2)/(4 In d) - h*/6] (10)

From the data obtained for the diffusion coefficients, the approximate values of the
molecular masses of the Ag and Ab molecule can be calculated using a simple relation:

M = Mygg (Diga/D)’ (11)
Mg = 150 000 Da and Dy = 4.1 107 cm’/s is the molecular mass and the diffusion

coefficient of human IgG, respectively. D is the diffusion coefficient of Ag or Ab
molecule referring to the free diffusion in distilled water at 20 °C.




From the conservation of mass. the precipitating concentrations referring to the
equilibrium conditions correspond to the sum of the concentrations of free reactant and
the concentration of reactant bound in a soluble immune complex:

CAp = CAp + €A, (12)
c¢B,r = cBsp + ¢Bs (13)

According to the equivalence rule, the precipitation under conditions of a double
diffusion starts at the equivalent molar concentrations of both precipitating
components,”'*'* as refers eq 2:

n=cBy/cAy (14)

This means that the equilibrium constant equation (eq 4) can be solved using cx
values from eq 7 or 8. The critical precipitating concentrations in egs 7 and 8 represent
the solubility of an immunoprecipitating component under dynamic conditions, as a
result of the interaction of the global diffusion of the precipitating components and
particle growth kinetics.'® Thus, the solubility, c,, has a kinetic and not a
thermodynamic significance. In case when enough time is allowed for the precipitation
in the solutions to reach the equilibrium, the solubility referring to the thermodynamic
conditions, could be found. If not, it is sufficient to determine the minimal factor, mg,
by which both solutions of A and B components should be diluted so that no
precipitate is formed upon their mixing at equivalence. The concentrations, Cp/mo,
referring to the equilibrium conditions are denoted as cy*.

In order to solve eq 4 using cAy* and/or cBy*, the concentrations of free
components and components bound in an immune complex in the solute phase (eqs 12
and 13) should be known. The solution is possible by introducing the ratio, T, of the
concentrations of both bound and free antigen in the solute phase:

I = CAgp*/cA*

The equilibrium concentrations cAs* and cA;p *, according to the definition for cAs
and cA,ygiven by eq 12, can be now expressed as follows:

CA* = cAL*/(r + 1) (15)

CA* =cA* r/(r+ 1) (16) |
The equilibrium constant equation (eq 4) in terms of cAy*, r and n. reads as:

Ka'= (1/cAy*) "1 [(r + /)" 17)

Equation 17 consists of two factors: the factor (1/cA,*)" and a factor F which is a
function of r and n:

F=r[(r+1)m]" (18)

The molar concentrations of both bound and free antigen in the solute phase are
extremely low and their experimental determination as well as the determination of




their ratio, r, is difficult. By varving the values of n in eq 18, the F function reaches a

-~ maximum for a constant r value (Figure 1). The maximum of F function corresponds
~“- 10 the maximal stability of an immunoprecipitating system prepared at equivalence
~ under given experimental conditions (pH. temperature, ionic strength, etc.) and now,

~ the Ka' equation reeds as:

Ka'= (1/cAp*)" Frex C (19)
Frnax 1 solg:ly a function of n. In order to ﬁnd Fma. the derivative of F should be zero:
dF/dn= (/) [+ D" In@c+ 1) -@c+ D" (nn+1)]=0

this means that:

In(r+1)=lnn+1=In(ne)

ie. ™

r=ne-1 20)
Introducing eq 20 into eq 18

Frx=(ne-1)e" 1)
where e is the basis of the natural logarithms.

The solution of the equilibrium constant egs 4 and/or 17 in terms of cA,* and n is:

Ka'= (e/cAy*)"(ne-1) (22)

MATERIALS AND METHODS

Immunogen and Antigen. Immunochemically pure human serum albumin (HSA),
pl 4.7, M.w. 65 kDa was prepared under non-denaturating conditions and contained
97.6% of monomer and 2.4% of dimer (Calbiochem-Behring Corp., La Jolla, Ca,,
USA). The same HSA was used for the immunization of rabbits (immunogen) and as
the antigen in the precipitation experiments. The concentration of antigen solutions
amounted to cA0 = 0.500 g HSA/L

Animals, Immunization and Immune Sera. Three randomly chosen male New
Zeland rabbits were immunized successively in two-week intervals with the HSA. Each
dose of the immunogen contained 0.75 mg of the HSA in a volume of 1 m! of
complete (CFA) or incomplete Freund's adjuvant (IFA) or saline solution. For the
primary immunization, the immunogen was emulsified in the CFA and administered
i.d. in the region of the peritoneal cavity. For the first and the second booster doses the
HSA was emulsified in the IFA and administered i.d in the region of the peritoneal
cavity. For the third booster dose a solution of HSA in saline was applied iv. in ear
veins.

Two weeks after receiving the last booster dose, rabbits were bled and blood
samples collected separately. The immune sera were decomplemented at 56 °C for 30




min. The antibody concentrations of the immune sera were previously determined by a
microgravimetric method.®

The Two-Cross Immunodiffusion Experiments. For the two-cross
immunodiffusion experiments 1% w/v agarose gel was prepared using agarose L
(Behring Institute. W. Germany). Phosphate buffered saline (PBS), pH 5.0, 5.5. and
7.0, contained 0.05 M KH,PO.. 0.10 M NaCl. 0.1% w/v NaN; and a variable amount
of NaOH. The borate buffered saline (BBS) contained 0.05 M H;BOs, 0.1 M NaCl,
0.1% w/v NaN; and NaOH was added in order to reach pH 8.6. These buffer solutions
were used to dilute the precipitating components and to equilibrate the agarose in
which the two-cross immunodiffusion experiments were performed. The
immunodiffusion experiments were carried out at 20 and 40 °C. For all technical
details concerning the two-cross immunodiffusion experimental procedure and the
evaluation of the results. refer to Pokri¢ and Pugar® or Zivkovié et al.” for somewhat-
less-detailed descriptions.

The Determination of the Solubility of Immune Complexes. The solubility of the
immune complexes was determined by consecutive dilutions of the solutions of the
precipitating components until the dilution, mo, at which no precipitate is formed.® The
starting precipitating system was prepared at equivalence by mixing 20 pl of the
immune serum and antigen solution which volume was calculated by eq 6. For the
dilutions, the total volume of the precipitating system was maintained constant, but the
volume parts of the solutions of the precipitating components were subsequently
reduced and simultaneously the volumes of the buffer solution increased. Relative laser
light scattering (%RLLS) measurements were performed using a Hyland laser
nephelometer PDQTM (Travenol Laboratories, Costa Mesa, Ca, USA). For each
dilution, the measurement was carried out until the maximum values of scattered light,
(%RLLS) mex Were reached. The experiments were performed at 20 and 40 °C.

RESULTS

Figure 1 illustrates the changes of the factor F (eq 18) vs. n for certain values of r.
The molar Ab/Ag ratio, n, refers to the immune complex prepared at equivalence. The
ratio of the molar concentrations of bound Ag over free Ag, r = cAp*/cA*, is related
to the equilibrium reached in the solute phase. Figure 1 shows that for each of the
chosen r values ranging between 5 and 12.5 and varying n values from 1 to 7, the
factor F reaches a maximum. The n values must lay in a limited range. The values of n
< 2 will seldom give precipitates at equivalence. The values of n > 5 will éxceptionally
ocecur and then the maxima of the F function vs. n (Figure 1) have a very steep shape.
The latter case would drastically increase the equilibrium constant (eq 19). For n values
between 1.5 and 5.5, and according to eq 21. the values of the Fma will lay between
13.79 and 3412. From eq 18 proceedes that in this case the molar ratios, r, of
associated, cA,y. and free antigen. cAs. in the solute phase will predominantly lay
between 3.07 and 13.95.

‘The diffusion coefficients of antigen and antibody. DA = 6.1 x 107 ¢cm’/s and DB =
41 x 107 em%s. determined by the immunodiffusion method (eqs 9 and 10).
correspond to the HSA and IgG class rabbit antibodies having molecular mass MA =
65 000 Da and MB = 160 000 Da (eq 11). respectively.

An example of the determination of the dilution factor. my. at which no detectable
precipitate is formed. is presented in Figure 2. The quantity of the precipitate formed




o \\as determined by the laser light scattering measurements. A strict linearity, r > 0.9,
between the intensity of scattered light. (%RLSS)m« and the dilution, 1/m, was

. _obtained 1in all examined systems. Thus, it is not necessary to find experimentally the

- dilution at which precipitation occurs no more. The extrapolation of the straight line

- (%RLSS)mex vs. 1/m 10 %RLLS = 0 gives the required dilution 1/my.

The . precipitating titers of both reactants determined by the two-cross
immunodiffusion (eqs 7 and 8) and the dilutions factors required for the corrections to
equilibrium conditions. are presented in Table 1. The values obtained for the dilution
factor. m > 1, proved that the precipitating titers determined under conditions of the
double diffusion do not refer to equilibrium conditions. Table 1 and Figure 2 shows
that my is always smaller at 40 than at 20 °C. This suggests that the precipitation under
conditions of diffusion at higher temperatures. occurs “under conditions closer to that of
equilibrium.

The precipitating concentrations, c,. of antigen and antibodies at which the
precipitation starts under conditions of double diffusion (eqs 7 and 8), are presented in
Table 2. Taking into account antibody and antigen molecular masses, the molar Ab/Ag
ratio. n, required for the formation of the immune complex at equivalence, was
calculated (eq 14). The stoichiometric composition of an Ab/Ag complex prepared
under identical experimental conditions but at two different temperatures, is constant
(Table 2). The small differences between, n, at 20 and 40 °C arise from the errors in
experimental determinations of the precipitating concentrations, cA,: and By, (egs 7
and 8).

The mean values of n are used in order to calculate the equilibrium constants Ka'
(egs 22). In order to calculate Ka', the precipiting concentrations of antigen solutions
obtained in g/ (Table 2) must also be expressed in mol/l and corrected to equilibrium
conditions, cAy,* by using dilution factors, mo (Table 1). Assuming that IgG class Abs
are bivalent, the equilibrium constants, Ka, are calculated according to the eq 5, and
presented in Table 3. The precipitating titers of the antigen solution corrected to
equilibrium conditions, PTA* are also presented in Table 3. In spite of the fact that in
our experiments the same antigen solution of a constant concentration, cA,, was used,
different PTA* values were obtained under different experimental conditions.
However, the data presented in Table 3 shows that Ka and PTA* values are well-
related. Thus, the PTA* data could be used for the rough ranking of the avidities of
different immune sera for the same multideterminant antigen.

Lower Ka values (Table 3) at higher rather than at lower temperatures, suggest that
antiHSA/HSA binding is an exothermic process.

DISCUSSION

The method. proposed for the determination of the equilibrium constants of the
reaction of the mutideterminant antigen and the specific polyclonal antibodies, requires
onlv the knoweledge of two accessible experimental parameters: the concentration at
which the antigen starts to precipitate under equilibrium conditions and the molar
Ab/Ag ratio in the immune complex prepared at equivalence. The immune complexes
can be prepared by the direct mixing of biological fluids in which immunoreacting
components naturally occur. This offers a great advantage of dealing with unmodified
molecules. since the separation. purification and labellmg of either the antigen or the
antibody. which might modify the binding properties,'” is not required.




Different values of precipitating titers of the antigen solution corrected to
equilibrium conditions, PTA*, (Table 3) obtained for the same Ab/Ag system at
different pH values, as well as under the identical experimental condition at two
different temperatures (Table 1). proved that the solubility, cAy (eq 8), of a HSA-anti
HSA system is dependent on both pH and temperature. The changes of the
stoichiometry of an antiHSA-HSA pair at various pH (Table 2), previously observed in
the experiments with a number of Ab/Ag complexes.g"f"'7 are caused by the changes of
the charge of Ab and Ag molecules with ambient pH.“m The dependence of both the
solubilty and stoichiometry of the Ab/Ag system regarding the experimental conditions,
explain the variations of equilibrium constant values of a given antiHSA-HSA pair at
various experimental conditions (Table 3) since Ka is directly related to the solubility,
cAy, and Ab/Ag ratio, n, (eqs 5 and 22). This finding agrees with the literature data
that the value of the equilibrium constant of an Ab/Ag system is affected by the
conditions under which the determination was carried out."'®

A part of the difficulties of the determination of the equilibrium constants of
reaction between multideterminant antigen and polyclonal antibodies lie in the fact that
Ka values are often dependent upon the absolute amounts of antigen and antibodies,
the dilution and/or the volume of the immunoreacting system, as well as upon the ratio
of Ab/Ag concentrations.>® So far, the state of equilibrium is disturbed and the
dissociation rate is greatly increased when one of the precipitating components is
present in a great excess.® In our experiments the Ab/Ag concentration ratio is
determined in advance by preparing the precipitating system at equivalence, while the
Ka determined at equilibrium is invariable to the total concentrations of antigen or
antibodies in biological fluids.

The determination of the equilibrium constant Ka in our experiments was possible
from the data obtained by the two-dimensional double immunodiffusion concerning the

preparation of an Ab/Ag system at equivalence, the precipitating titer of antibody
solution, PTA, and diffusion coefficients, D, and/or molecular masses, M, of
immunoreacting molecules. The concentration of antigen solution, cAp, should be
known or determined in advance in order to calculate the critical precipitating
concentration of antigen, cAy, (eq 7) required for the determination of Ka' (eq 22).
The determination of the precipitating titer (PT) by the two-cross immunodiffusion
does not require the use of the standards as well as the knowledge of the
concentrations of the solutions of the precipitating components. For a constant
concentration of the antigen solution, cAo, the precipitating titers referring to
equilibrium conditions, PTA*, depend solely on the critical precipitating
concentrations, cAy,* (eq 7). So far, according to the theory, the different
concentrations of identical antibodies obtained by dilutions of an immune serum, would
not influence the PTA* and/or cAy* values.® The comparison of PTA* and Ka values
(Table 3) shows that they are well-related. Thus, under the conditions when the
concentrations and molecular masses of antigens and antibodies are unknown or
difficult to determine. the PTA* could be used for a rough ranking of relative affinities
of different immune sera against a same antigen.
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Table 1 The Precipitating Titers of the Antigen (PTA) and Antibody (PTB) Solutions,
and the Minimal Dilution Factors (my) in antiHSA/HSA Systems.

immune pH 20 °C 40 °C
serum
PTA PIB my PTA PIB my
50 356 265 3.95 549 400 1.66
55 509 262 4.90 565 293 3.22
l 7.0 509 348 2.71 562 384 1.79
8.6 659 412 3.48 735 434 237
50 339 377 5.99 387 448 4.93
55 470 373 7.75 551 448 6.37
? 7.0 487 470 5.15 551 554 3.72
8.6 682 604 5.88 718 638 4.86
50 270 189 3.72 462 321 1.94
55 382 189 4.76 554 271 3.21
’ 7.4 382 250 3.02 547 349 1.93
8.6 508 280 3.10 761 407 1.52

The precipitating titers and dilution factors are dimensionless
quantities.
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Table 2 The Precipitating Concentrations (cy) and the Ab/Ag Molar Ratio (n) in
antiHSA/HSA System Prepared at Equivalence.

immune pH 20°C 40 °C

serum
o 10° & n’ cpr 10° ¢ n”* n
A B A B
5.0 1.4045 6.6868 2.06 0.9108 4.4300 2.11 2.085
55 0.9823 6.7633 2.98 0.8850 6.0477 2.96 2.970
: 7.0 0.9823 5.0919 2.25 0.8897 4.614;5 2.25 2.250
8.6 0.7194 4.3009 2.59 0.6803 4.0829 2.60 2.595
5.0 1.4749 7.1618 2.10 1.2920 6.0268 2.02 2.060
5.5 1.0638 7.2386 2.95 0.9074 6.0268 2.88 2.915
? 7.0 1.0267 5.7447 2.43 0.9074 4.8736 2.33 2.380
8.6 0.7331 4.4702 2.64 0.6964 4.2320 2.63 2.635
50 1.8519 7.1058 1.67 1.0823 4.1838 1.68 1.675
55 1.3089 7.1058 2.35 0.9025 4.9557 2.38 2.365
’ 7.0 1.3089 5.3720 ’ l.78» 0.9141 3.8481 1.82 | 1.800
8.6 0.9843 4.7964 2.1>1 0.6570 3.2998 2.18 2.145

% The precipitating concentrations, expressed in g/l. are calculated (eqs 7 and 8) taking into
account that the concentration of HSA solutions (A) amounted to cAy = 0.500 g/l/ and the
concentrations of anti HSA in rabbit sera (B) amounted to ¢Bo = 1.772 g/l (rabbit 1), c¢Bo =
2.700 g/l, (rabbit 2), and cBo = 1.343 ¢/l (rabbit 3).}
* n is calculated (eq 14) taking into account that molecular mass of antigen and antibodies
amounts to 65 000 Da and 16 0000 Da, respectively.




Table 3 The Precipitating Titers of Antigen Solution (PTA*) Referring to the
Equilibrium Conditions and the Equilibrium Constants of antiHSA/HSA Reactions

(Ka).

immune pH 20°C 40 °C

serum

PTA** Kal0®®  PTA** Kal0**

1 5.0 1406 3.23 911 2.60
2 5.0 2031 3.89 1908 3.76
3 5.0 1004 2.75 869 2.60
1 5.5 2494 413 1819 3.53
2 5.5 3643 5.00 3510 4.19
3 5.5 1818 3.62 1778 3.58
1 7.0 1379 3.17 1006 2.71
2 7.0 2508 4.25 2066 3.85
3 7.0 1154 2.95 1056 2.82
1 8.6 2419 4.14 1742 3.51
2 8.6 4010 5.13 3490 495
3 8.6 1575 3.41 1157 2.92

® The precipitating titers are dimensionless quantities.

# The equilibrium constants are expressed in l/mol and
calculated according to eqs 5 and 22. For this purpose the
precipitating concentrations of antigen solutions in g/l (Table 2)
are transformed to equilibrium conditions by using dilution
factor my (Table 1) and expressed in mol/l, taking into account
that molecular mass of antigen is 65 000 Da. The average of n
values determined at 20 and 40 °C (Table 2) is introduced into
eqgs 5 and 22.
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0.1 Abstract

We introduce a new notion that connects the combinatorial concept of regularity
with the geometrical notion of face-transitivity. This new notion implies finiteness
results in case of bounded maximal face size. We give lists of structures for some
classes and investigate polyhedra with constant vertex degree and faces of only two

sizes.

1 Introductio‘nm

A planar (finite or infinite) graph is called face-transitive, if the automorphism group
acts transitively on the set of faces. For finite polyhedra (see [Ma71]) as well as for
infinite graphs in the plane with finite faces and finite vertex degree (that is tilings,
see [Ba90][De90)) it is well known that the graph can be realized with its full com-
binatorial automorphism group as its group of geometrical symmetries. Restricting
the attention to polyhedra with constant vertex degree, up to combinatorial equiva-
lence only the 5 Platonic solids have an automorphism group acting transitively on
their faces. In the remaining text we will restrict our attention to polyhedra with
constant vertex degree.

A natural generalisation of this concept — let us call it weakly face-transitive — is
to require that only faces of the same size are equivalent under the automorphism
group. If we define the 0-th corona of a face to be the face itself and the n-th corona
to be the set of all those faces that are contained in the (n-1)-th corona or share
an edge with it, we can further relax this concept and only require some coronas
of fixed size to be isomorphic by an isomorphism mapping the central faces onto
each other. A polvhedron with all n-coronas of faces of the same size isomorphic
is called weakly n-transitive. Obviously, all polyhedra are weakly O-transitive and if
a polyvhedron is weakly (n+1)-transitive, it is also weakly n-transitive. So the first
interesting case to study is the case of weakly 1-transitive polyhedra. Still relaxing
this condition by not requiring the first coronas to be isomorphic, but just to be
isomorphic as multisets (that is: every face of a given size ¢ must have the same
number of neighbours of size 1’ for every 7'), still gives a very restrictive condition

*e-mail: gunnar@mathematik.uni-bielefeld.de
fe-mail: deza@dmi.ens.fr




and as we will see, it already implies finiteness in case the maximal size of a face
is bounded. We call this condition (strong) face-regularity. So the class of all face-
regular polyhedra contains all weakly n-face-transitive polyhedra for any n > 1, and
therefore also the weakly face-transitive or even face-transitive ones.

The same concept can be reached by strengthening the notion of a monochro-
matic regular dual: Let p; denote the number of i-gonsin a given polyhedron. We use
the notation p = (p3, py, ..., pi, ...ps) for the face-vector (or p-v ector) of a polyhedron;
b is the maximal number for which a face with size b exists.

A less restrictive definition of face-regularity, but only for bifaced polyhedra,
was considered in [DGr97c]. Namely, if only p, and p, are non-zeros and a < b,
then the number f of i-faces, edge-adjacent to any given i-face, was required to be
independent of the choice of the i-face, for i either a or b. For a k-valent polyhedron
we write aRy or bRy, if this partial (or weak) face-regularity holds for a-gonal or,
respectively, b-gonal faces. All such simple polyhedra with b < 6, as well as all
4-valent ones with b = 4, except the cases 4R, for (k;a,b) = (3;4,6) and aR,, aR,
for (k;a,b) € {(4;3,4), (3 5,6)} were found in [DGr97c] For example, all 12 (resp.
6,4,10, 26) polyhedra bRy for all five possible cases - k = 4; &k = 3,b < 6 and
k=3,b=6,a € {3,4,5} - are listed there. (The graphs of all 26 6Ry fullerenes
(ie. (k,a,b) = (3,5,6)) are given in list 7 below.) In these cases 8 (resp. 6,4,9,12)
polyhedra are also aRy, i.e. face-regular in the sense of the present paper.

The face-regularity which we consider, is a purely combinatorial property of the
skeleton of a polyhedron. It is different from the affine notion of regular-faced (i.e.
all faces being regular polygons) polyhedra.

We use the abbreviation frp for face-regular polyhedron. An frp in one of the lists
below is described by ¢;, where j is the number of the List and ¢ is its number in
List j. We also use the notation i for ;.

We call two frp fr-isomers, if they have the same parameters as frp, i.e. v, the
p-vector and the numbers f(a,b), i.e. the number of b-faces, edge-adjacent to each
a-face for any a, b, coincide.

All fr—1somers in List 1 are bifaced. They are: 11,12(v = 16); 20,21(v = 32);
32, 33(v = 80) and 3-faced 49, 50(v = 20)

All fr-isomers in List 2 are:

for v = 20: 104, 115;

for v = 24: 61,,62,;

for v = 26: 165—19,;

for v = 28: 665, 672; 697, T09; T25—T74y; T35, 775: 765, T85:

for v = 32: 28-_7_—312; 322‘“342; 872, 882; 892, 902§

for v = 36: '2-3,3-2_2 952, 962: 1022, 1032;

for v = 40: 422, 432

for v = 44: 52.69_1 492'—'512; 119-_)_, 1202 1372—1392

All fr-isomers in Lists 4 and 5 are 6, 74 with v = 14.

Considering the polyhedra of Lists 1,2 and 3 with respect to collapsing of all
triangular faces to points, (i.e. the inverse to vertex-truncation), we see that in List
1, any such collapsing gives a member of List 1. But in List 2 there are polyhedra,
such that this collapsing does not give an frp. The smallest one is 116s.

Examples of sequences of frp, such that each of them comes from the previous one
by 1-edge truncation are: 1,4,2,6,7,8,9; 1,4,35,36,59,39,11:and 1,4, 2,6, 14, 4,.




Some infinite families of 3-valent frp:
Bifaced : Prism, and Barrel, (i.e. two n-gons separated by two layers of 5-gons);

3-faced : Prism,, Barrel,, truncated on all 2n vertices of both n-gons;
Prism,,, edge-truncated on n disjoint edges of only one n-gon;

Prismgs,, edge-truncated on n edges, separated by at least 2 edges, of only one
n-gon;

4-faced : Prism,, (vertex-) truncated on all vertices of only one n-gon;
5-faced : Barrel,, truncated on all vertices of only one n-gon.

In fact, many of the frp in the lists are some partial truncations of Prism, and
Barrel,,. For example, there are exactly 10 frp, which are partial truncations of the
Cube: There are 1 (resp. 3,1,3,1,1) possibilities for truncations on 1 (resp 2,3,4,6,8)
vertices.

Remarks:

(i) Among the chiral polyhedra in the lists are, for example, Nrs 41, 61, 62, 63, 100,
104 in List 2; Nr.9 in List 3; and, especially, Nrs 13,22,34 in List 1 and 9 in List 4
with symmetry T, O, I and O, respectively.
-(ii) None of the polyhedra in any of our Lists has a trivial symmetry group.

The Finiteness of Classes with Bounded Face Size

Theorem 1 For every n € N there is only a finite number of face-regular polyhedra
with constant verter degree and face sizes not exceeding n.

Proof.

We will assume that the polyhedra in question all contain an n-gon. The total
number can be obtained by summing up over all m < n.

Remind that for 7, € N the number f(7, j) denotes the number of neighbouring
j-gons of an i-gon. So f(4,7)p; = f(J,7)p; is the number of edges between i-gons and
j-gons and we can express p; as p; = %pz in case i-gonal and j-gonal faces share
at least one edge.

Look at the f-graph G with vertex set V' = {ilp; > 0} and édge set E =
{{i.7}f(4,7) > 0}. This graph is connected since the dual of the underlying poly-
hedron is connected. We can express every other value p; by a formula of the kind

f(l ’i) f(127i ) f(lovi) —_— y
i) Frd) - faiPn = (1)

if 1,41,...,%,n is a (e.g. shortest) path from ¢ to n in G.

Since for fixed n all the f(4,7) as well as the length of the path are bounded and
since the number of graphs on n vertices is also finite, we have only a finite number
of possible sets of equations p; = g(i)p, (3 <1 < n).

As a well known consequence of Euler’s formula we get Y."_,(6—1)p; = 12 in the
3-valent case. 3 o 5(4 — i)p; = 8 for 4-valent polyhedra and ¥ (10 — 3)p; = 20
for 5-valent polyhedra.

Substituting p; by g(i)p, in this formula, every set of equations gives exactly one
solution for p, and therefore also for each p;. So for every set of equations there is a

3
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well determined number of faces and therefore there is a maximum number of faces
that is possible.

O

- Corollary 1 If in the cubic case the number of non-hezagons is bounded or in the
quartic case the number of non-squares is bounded, then there is only a finite number
of face-regular polyhedra.

Proof.

The fact that the number of faces smaller than 6 (resp. 4) is bounded gives
an upper bound on the maximum face size, implying the result by the previous
theorem.

O

Statistics

In this section we will give some statistics about the number of face-regular polyhedra
compared to the number of all polyhedra for some classes.




vertices polyhedra face-regular polyhedra vertices polyhedra face-regular polyhedra

4 1 1 8 1 1
6 1 1 10 1 1
8 2 2 12 2 2
10 3 4 14 5 3
12 14 7 16 12 3
14 50 3 18 34 1
16 233 15 20 130 10
18 1249 9 22 525 2
20 7 595 33 24 2472 8
22 49 566 11 26 12 400 3
24 339 722 38 28 65 619 10
26 2 406 841 29 30 357 504 7
28 17 490 241 99 32 1992 985 30
30 129 664 753 44 34 11 284 042 1
32 977 526 957 194 36 64 719 883 22
34 7 475 907 149 25 38 375 126 827 16

318 40 2 194 439 398 18

36 57 896 349 553

Table 1: Cubic polyhedra

vertices | polyhedra | face-regular polyhedra

4 1

6 1

8 2
10 3
12 10
14 15
16 30
18 44
20 77
24 184
26 267
28 420
30 595
32 883
38 2 443
44 6 319
52 19 345
56 32 219
60 52 293
68 128 343
80 425 998
140 77

Ca N SR T U Ul S~ R N N e

Table 2: Cubic polyhedra without
triangles

Table 3: Cubic polyhedra without faces larger than a hexagon. For all vertex
numbers not mentioned, no face-regular polyhedra exist.

2 List 1: all 64 face-regular simple polyhedra with

b < 6.

Among the 64 polyhedra of the List, the first three are regular, then there are 31
bifaced ones: six with b < 3, four 3, (for n = 12, 16, 16, 26), nine 4, (for n =

12, 14, 20, 20, 24, 26, 32, 32,36) and 12 fullerenes 5, (which are Fp4(Dgy), Fas(Ty)

:

F33(Dsp), Fss3(Csy), Fuu(T). Fso(T), Fs6(Ta). Feo(In), Fes(Ta)s Feo(In), Fso(Dsn),
Fi0(I)). Nrs. 35-37 have three tvpes of faces and last seven polyhedra, Nrs. 58-64,

have four types of faces.

Among the 64 polyhedra of the List 1, three are regular ones (Tetrahedron,
Cube and Dodecahedron), five are semi-regular (3-, 5-, 6-gonal prisms, truncated
octahehedron and truncated Icosahedron) and no one is regular-faced from the list of
92 in {Joh66]. But there are three, which are dual to regular-faced snub disphenoid,
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3-augmented 3-gonal prism and gyroelongated square dipyramid (last three have
number 84, 51 and 17, respectively, in the list of [Joh66]). Together with three
regular ones and 3-, 5-gonal prisms, it gives the duals of all eight convex deltahedra.

Nr.l v=4 Nr.2 v=8 Nr.3 v=20
p3=4:3 ps=6:04 ps =12:0,0,5

Groupsize: 24 Groupsize: 48 Groupsize: 120
Group: T, Group: Oy Group: I
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Nr4d v=6 Nr.5 v=12 Nr.6 v=10 Nr.7 v=12
ps=3:272 ps=6:1,04 ps=2:0,50 ps=4:0,3.2
p3=2:0,3 ps=2:0,0,3 py=5:0,22 ps=4:0,1,3
Groupsize: 12 Groupsize: 12 Groupsize: 20 Groupsize: 8
Group: D3y Group: D3y Group: Dsp, Group: Doy
Nr.8 v=14 Nr.9 v =16
ps=6:0,23 p;=8:0,1,4
ps=3:00,4 ps=2:0,04
Groupsize: 12 Groupsize: 16
Group: Dj; Group: Dyy
Nr.10 v=12 Nr.11 v=16 Nr.12 wv=16 Nr.13 v =28
ps=4:3,0.0,3 ps=61:2,0,0,4 pe =6:2,0,04 pe =12 : 1,0,0,5
p3 =4:0,0,0.3 p3 =4:0,0,03 p3=4:0,00.3 ps =4:0,0,0,3
Groupsize: 24 Groupsize: 24 Groupsize: 8 Groupsize: 12
Group: Ty Group: Ty Group: Doy Group: T
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Nr.14 v=12 Nr.15 v=14 Nr.16 v =20 Nr.17 v=20
ps ==2:0,6,0,0 pe =3:04,0,2 ps=6:0204 ps=6:0,3,0,3
ps=6:0,202 ps=6:0,2,0,2 p+=6:0202  ps=6:01,03
Groupsize: 24 Groupsize: 12 Groupsize: 12 Groupsize: 6
Group: Dgy, Group: Dj; Group: Dsgy Group: S
Nr.18 v =24 Nr.19 v=26 Nr.20 v=32 = Nr.21 v=32
ps=8:0,3,0,3 ps=9:0,2,0,4 pe=12:0,2,04 ps =12:0,2,0,4
ps=6:0,004 ps=6:0,1,03 ps=6:0,0,04 ps=6:0,0,04
Groupsize: 48 Groupsize: 12 Groupsize: 12 Groupsize: 48
Group: Oy Group: Dsp Group: D3y Group: Oy
Nr.22 v=2536
Dg = 24 : 0,1,0,5
Py = 6: 0004 :
Groupsize: 24
Group: O
8
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Nr.23 v=24 Nr.24 v=28 Nr.25 v=32  Nr.26 v=38

ps =2: 0,0,6,0 ps =4: 0,0,6,0 pe =6:0,0,4,2 ps=9:0,04,2

ps=12:0,04,1 p;=12:0,032 p;=12:0,032 p;=12:0,0,2,3
Groupsize: 24 Groupsize: 24 Groupsize: 12 Groupsize: 6
Group: Dsgy Group: Ty Group: D Group: Cs,

Nr.27 v=44 Nr.28 v =52 Nr.29 v=56 Nr.30 v =60
ps=12:0,0,3,3 ps = 16 : 0,0,3,3 pe=18:0,0,2,4 . ps=20:0,03,3
ps =12 :0,0,2,3 p; =12:0,0,1,4 p; =12:0,0,2,3 ps=12:0,0,0,5

Groupsize: 12 Groupsize: 12 Groupsize: 24 Groupsize: 120
Group: T ‘Group: T Group: Ty Group: I,

Nr.31 v =68 Nr.32 v =80 Nr.33 v=80 Nr.34 v =140
ps=24:0024 ps=30:0024 ps=30:0024 ps=60:0,01,5
ps=12:0,0,1,4 ps =12:0,0,0,5 ps =12:00,0,5 p;=12:0,0,0,5
Groupsize: 24 Groupsize: 120 Groupsize: 20 Groupsize: 60
Group: Ty Group: Iy Group: Ds, Group: [




Nr.35 v=38 Nr.36 v=10 Nr.37 v=18
ps=2: 2,2,1 ps=3: 1,2,2 pe=06: 112:073
p1=2:1,12 py=3:0,2,2 ps=3:0,0,04
p3=2:0,1,2 p3=1:0,0,3 p3=2:0,003
Groupsize: 4 Groupsize: 6 Groupsize: 12

Group: Cy, Group: Cjs, Group: Dgy,

Nr.38 v=10 Nr.39 v=14 Nrdl v=24 l
pe=1:3030 ps=3: 20,22 ps=6:0,0,2,4
ps=3:2,02,1 ps =3:10,2,2 ps =6:1,0,2,2
p3s=3:0021 p3=3:0,0,1,2 ps=2:0,0,3,0
Groupsize: 6 Groupsize: 6 Groupsize: 12 Groupsize: 12

Group: Cs, Group: Cz, Group: D34 Group: D3y
Nr.42 ©v=20 Nr.43 v =18
ps=6:1,023 ps =3:0,04,2
p;=3:1,004 ps=6:1,022
p3=3:0,01,2 p3=2:0,03,0
Groupsize: 6 Groupsize: 12
Group: Csp, - Group: Dj;
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Nr.44
pe=2:
ps=4:02]1,2
ps=4:01,21
Groupsize: 8
Group: Dy

v=16
0,2,4,0

@ @ &

Nr.45

v =20 Nr.46 v =20
ps=3:0,24,0 ps=4:023,1
ps=06:0,1,2.2 ps =4:0,2,0,3
ps=3:0,02,2 pys=4:0,0,22
Groupsize: 12 Groupsize: 8

Group: Ds; Group: Dy,

Nr47 v=20
pe=4:0,1,32
bs=4: 0727013
pe=4:0121
Groupsize: 8
Group: Dy

@

Nr.48 v=20

Nr.49 v=20

Nr.50 v=20 Nr.51 v=24
ps=4:023,]1 ps=4:0,2,22 ps=4:0222 ps=4:0,04,2
ps=4:0113 ps=4:0,21,2 ps=4:0,21.2 ps =8 :0,1,2,2
pa=4:0112 ps=4:0,0,22 ps=4:0,0,2.2 ps=2:0,04,0

Groupsize: 4 Groupsize: 8 Groupsize: 8 Groupsize: 16
Group: Cyy Group: Dy Group: Doy, Group: Dy
7N
\;-'/
Nr.52 v=24 Nr.53 v =26 Nr.54 =28 Nr.55 =30
ps=6:0222 ps =6:0,1,3,2 ps=38:0,1,14 pe=10:0,2,1,3
ps=4:011,3 ps=6:0,11,3 ps=4:021.2 ps=2:0,00,3
ps=4:0013 ps=3: 0,022 pys=4:0022 py=95:0,0,04
Groupsize: 4 Groupsize: 6 Groupsize: 4 Groupsize: 20
Group: D, Group: Ds Group: D, Group: Dsy,
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Nr.56 v =32
Ds = 8: 0,0,2,4
P =8: 0,1,2,2
pe=2:0,04,0

Groupsize: 16
Group: Dy

©

Nr.57 v=32
pe=8: 0,1,3,2
p;=8:0,0,2,3
pa=2:0,0,0,4
Groupsize: 16
Group: Dyy

S R

Nr.58
Pe=1:
Ps=2:
pe=2:1,021
p3=2:0,11,1
Groupsize: 2
Group: C

v=10
2,2,2,0
1,2,1,1

Nr.62
Ds = 3:
Ds = 3:
Dy = 3:
p3=1: ;
roupsize: 6
Group: Cs,

P T

Nr.63

Nr.59
pe=1:
ps=4:
py=1: 0,0,4,0
ps=2:002,1
Groupsize: 4
Group: Cyy

v=12
2,0,4,0
1,1,2,1

v=16
1,2,1,2
0,2,2,1

pe=3:
ps=3:
p;=3:0,022
p3=1:0,00,3
Groupsize: 6
Group: Cs,

Nr.60
Ps=2:
ps=2:
Dy = 2: 1,0,1,2
ps=2:0111
Groupsize: 2
Group: Cj

v=12
1,2,2,1
1,1.1,2

Nr.64
ps=4:
ps=2:
ps=2:101,2
D3 = 2 0,1,0,2
Groupsize: 4
GI‘OUpI Cgh

v =16
1,1,2.2
0,1,04

Nr.61
De = 2:
ps=2:
Pa=2:0,121
D3 = 2: 0,0,1,2
Groupsize: 4
Group: Cs,

v=12
2,1,2,1
1,2,0,2




3 List 2: all 160 face-regular simple polyhedra
with 6 =7 and up to 24 faces

D @ @

- Nr.l v=20 Nr.2 v=36 Nr.3 v=36
pr=6:30004 p;=12:20005 p;=12:20,00,5
ps=6:00003 p3=8:0,0003 p3=8:0,0003

Groupsize: 12 Groupsize: 6 Groupsize: 24
Nr.4 =14 Nr.5 v=44 Nr.6 v=44 Nr.7 v=44

pr=2:07000 p;=12:0,3,0,04 p;=12:0,3,0,04 p;=12:0,2,0,0,5
ps=7:02002 ps=12:0,1,003 pgy=12:0,1,003 ps=12:0,2,0,0,2
Groupsize: 28 Groupsize: 24 Groupsize: 6 Groupsize: 12

-
% &

Nr.8 ©v=28 Nr.9 v=44
pr=2:00700 p;=6:00,6,01
ps=14:00401 ps=18:00,3072

Groupsize: 28 Groupsize: 12

13




88 @ %

Nr.10
pr=4:2,073,0,2
ps=4:1,0103
p3=4:0,01,02

Groupsize: 4

v=20 Nr.11

v =20
pr=4:203,02
ps=4:1,0103
ps=4:0,0,1,0,2
Groupsize: 4

Nr.12

v=24
pr=4:04,0,1,2
ps=2:04,0,0,2
p4=8:0,1,0,1,2
Groupsize: 8

Nr.13 v=24
pr=6:12004
ps=6:0,2,0,0,2
p3=2:0,0,0,0,3

Groupsize: 4

> (P © D

Nr.14 v=24
pr=6:13,00,3
ps=6:0,1,0,0,3
ps=2:00,0,0,3

" Groupsize: 6

Nr.15 v=24

p3=6:0,0,0,1,2
Groupsize: 12

@ ®W @ &

Nr.18 v =26
pr=6:200,23
ps =3 : 2.0,0,0.4
ps =6:0,0,0,1.2

Groupsize: 4

Nr.19 v =26
p;=6:2,0,0,2,3
ps =3: 2,0,0,0,4
ps=16:0,0,0.1,2
Groupsize: 12

14

pr=6:20,01,4
s =2: 3,0,0,0,3

Nr.16 v =26

pr=6:200,23
s =3:2,00,04

p3=6:0,001,2
Groupsize: 4

Nr.20 7 =28
pr=4:024,0,1
ps=8:0.120.2
ps =+:0.0.202

Groupsize: 8

Nr.17 o= 26
pr=6:20023 |
pe =3 : 2,0,0,0,4 1
p3=6:0,0,0,1,2 :

Groupsize: 12

Nr.21 v =28
pr=4:0,4,03,0
ps =4:0,2,0,1,3
py=8:0,1,0,1,2
Groupsize: 8




Nr.22

v =32
pr=6:0,2,3,0,2
ps = 6:0,0,2,0,3
pse=6:0,2,0,0,2
Groupsize: 12

Nr.23 v =32
pr=6:0,21,04
ps=6:0220,1
ps=6:0,0,2,0,2

Groupsize: 12

Nr.24

Groupsize: 12

v =32
pr=16:0,2,3,0,2
ps =6:0,2,0,0,3
psy=6:0,0,2,0,2

Nr.25 7v=232
pr=16:0,1,3,0,3
ps=6:0,2,0,0,3
ps=6:0,1,2,0,1

Groupsize: 6

® 8 ® @

Nr.26 v=32

pr =6:0,3,2,0,2
ps =6:0,1,2,0,2

ps=6:0,0,1,0,3
Groupsize: 12

Nr.27 v =32
pr=6:0,2,3,0,2
ps=6:0,110,3
ps=6:0,1,1,0,2

Groupsize: 6

Nr.28 v =32
pr=06:02203
ps=6:0,2,1,0,2
py=6:0,0,2,0,2

Groupsize: 12

Nr.29 v =32
pr=6:0,2,2,03
ps=6:0,21,0,2
Py = 6: 0,0,2’0,2

Groupsize: 4

& @ @ ®

Nr.30 v =232
p;=6:0,2,2,03
ps=6:0.21,0.2
py=6:0,0,202

Groupsize: 12

Nr.31 v=32
pr=6:022,0,3
ps=6:021,0,2
py=6:0,0,2,0,2

Groupsize: 4

Nr.32 v =32
pr==6:2,0032
ps=6:1,0,02,3
p;=6:0,00.1.2

Groupsize: 6

Nr.33 v =32

pr=6:20,0,3,2

ps=6:1.0,0,2,3

p3=6:0,0,0,1,2
Groupsize: 12




& &

Nr.34 v =32 Nr.35
pr=6:20,0,3,2
ps =6:1,0,0,2,3
p3=6:0,00,1,2

Groupsize: 6

v =232 Nr.36 v =232
pr=6:10024 pr=6:1,0033
Pe=6:20022 ps=6:20013
p3s=6:0,0,0,2,1 p3=6:0,0,0,2,1
Groupsize: 12 Groupsize: 6

Nr.37 ¢ =236
pr=4:02,04,1
ps =8:0,2,0,2,2
Ps = 8: 0,1,0,2,1

- Groupsize: 8

P e @ B

Nr.38 v =36 Nr.39 v=38 Nr.40 v=38
pr=6:10402 p;=6:004,03 p;=6:0,3022
p;=12:003,02 p;=12:0,1,202 ps=6:0,3012"
p3=2:000,03 p;=3:0,04,0,0 ps=9:0,00,22

Groupsize: 12 Groupsize: 12 Groupsize: 12

Nr.41 v =40
p7 =10:0,3,1,0,3
ps =2:0,0,0,0,5
ps =10:0,1,0,0,3

Groupsize: 10

S b @ 6

Nr.42 =40 Nr.43 v =40 Nr.44 v=40 Nr.45 =42
pr=12:12004 pr=12:12004 p;=12:200,14 p;=2:0.,7,00
p1=6:00004 p;,=6:00004 ps=2:0000,6 ps=7:0.04.20
p3=4:00003 p3=4:00003 p;=8:00003 ps=14:00,2.2,1

Groupsize: 6 Groupsize: 24 Groupsize: 8 Groupsize: 28

16




® & @

Nr.46 v =42 Nrd7 v=44 Nr48 v=44 Nr.d49 v=44
pr=2:00070 p;=4:00421 p;=6:10042 p;=12:1,0,2,04
pe=14:02031 ps=4:004,0,2 ps=12:1,0032 ps=6:1,0,0,04
ps=7:00040 p;=16:003,1,1 p3=6:00021 p3=6:0,0,1,02

Groupsize: 28 Groupsize: 8 Groupsize: 6 Groupsize: 6

Nr.50 v=44 Nr.51 v=44
pr=12:1,02,04 p;=12:1,02,04
ps=6:10004 ps=6:1.000,4
p3=6:00102 p3=6:0,0,1,0,2

Groupsize: 6 Groupsize: 2

!

B &G

Nr.52 wv=16 Nr.53 ¢=16 Nr.54 v =16 Nr.55 v=16
pr=2:12400 p;=2:20221 p;=3:22012 pr=3:220.1,2
ps=4:1,1102 ps=2:20,1,12 ps=1:03,003 ps=1:3,0,0.0,3
p1=2:00202 p;=2:20012 py=3:10012 py=3:020.0.2
p3=2:00201 .p3=4:00,1,11 p;3=3:01,00,2 p3=3:0.0,0.1,2

Groupsize: 4 Groupsize: 4 Groupsize: 6 Groupsize: 6

17




® 26

Nr.56 =20
Pr = 2: 1,2,0,4,0
pe=4:120,1,2
pys=4:0,1,0,2,1
p3 =2:0,0,0,2,1

Nr.57 v=20
pr=2:2014,0
pe=4:1,01,22
p;=2:20021
ps=4:00,1,1,1

Nr.58 v=20
pr=3:12022
ps=3:20022
ps=3:0,2,0,0,2
p3=3:0,00.21

Nr.59 v=20
pr=3:120272
De = 3: 1,1,0,2,2
Py =3:1,00,1,2

Groupsize: 4

Groupsize: 4

p3=3:010,1,1

Groupsize: 6

Groupsize: 3

0 W <& &

Nr.60 v=24

Nr.61

v=24

Nr.62

v =24 Nr.63 v=24
pr=3:10420 p;=4:10312 p;=4:1,0312 p,=4: 2,1,0,3,1
ps=2:00303 ps=2:20202 ps=2:20202 ps=4:110,13
ps=6:10112 p;=4:10013 ps=4:1,001,3 ps=2:0,00,2,2

ps =3:00201

Groupsize: 6

Nr.64 =26
pr=6:1,1203
ps =3:0,1.0,04
ps=3:1,01,02
p3s =3:0,1,0,0.2
Groupsize: 6

p3=4:
Groupsize: 4

H @

Nr.65 v=28
pr=2:20,140
Ds = 8: 1,0,1,3,1
ps=2:0,0,0.4,1
ps=4:0,00.2,1
Groupsize: 4

0,0,1,11

18

ps=4:0,01,1,1
Groupsize: 4

Nr.66 v =28
Dr = 4 10231
ps=4:102073
ps=4:1.0,0.22
p3=4:0,01.1,1
Groupsize: 4

P3 = 4: 0,0,0,1,2
Groupsize: 4

Nr.67 v =28
pr = L 1,0,2,3,1
ps=4:1.0,2,0,3
ps=4:1,00,2,2
p3=4:00,1,1,1
Groupsize: 4




R

Nr.68

Groupsize: 8

v =128
pr=4:2022]1
pe =4:1,02]1,2
ps =4:0,0]1,22
p3=4:0,00,12

Nr.69 v=28

pr=4:1,01,3,2
pe =4:1020,3

ps=4:1,012]1
p3=4:001,1,1
Groupsize: 4

Nr.70

ps=4:
p3=4:
Groupsize: 4

v =28
pr=4:1,0,13.2
ps=4:1,0,2,0,3
' 1,0,1,2,1
0,0,1,1,1

Nr.71 v=28
pr=4:103.2,1
pe=4:201,12
ps =4:001,1,3
ps=4:00,0,21

Groupsize: 4

DB G &

Nr.72 ©v=28

pr=4:1,023,1
ps=4:1,0113
ps=4:1011,2
p3=4:0,011,1

Groupsize: 2

<&

S
Nr.76 v =28
pr=4:20221
ps =4:0,0.2.22
ps =4:1,002.2

p3=4:0,01,0.2
Groupsize: 8

Nr.73 v=28
pr=4:1023,1
ps=4:101,1,3
: 1,0,1,1,2
£ 0,0,1,1,1
Groupsize: 4

Nr.77 v =28
pr=4:10,2722
ps=4:1,021.2
p;=4: 1,0,0,2,2
p3=4:0,01,1,1
Groupsize: 4

19

Nr.74 v =28
pr=4:1,0231
ps=4:1,011,3
ps=4:10,1,1,2
ps=4:0011,1
Groupsize: 4

Nr.78 1 =28
pr=4:20221
ps=4:00222
ps=4:1,00,22
p3=4:0,01,02
Groupsize: 8

Nr.75 v=28
pr=4:10,22.2
ps =4:10,2,1,2
ps =4:1,0,0,2,2
p3=4:00,1,1,1
Groupsize: 4

Nr.79 ¢ =30
pr=6: 11,30,
ps =6:0.11,0,3
pe=3:0020.2
p3 =2:0.0,0,0,3
Groupsize: 6




S @8

Nr.80 v=30
p7r=6:0,2,2,0,3
ps =6: 1,0,2,0,2
pe=3:0,00,04
p3=2:0,0,3,0,0

Groupsize: 12

Nr.81 v=30
pr=6:1,20,2,2
ps =3: 0,2,0,0,4
ps=6:0,1,01,2
p3=2:0,00,0,3

Groupsize: 12

Nr.82

Groupsize: 6

v=232
pr=3:0214,0
ps=6:0,1,1,22
ps =3:0,2,0,2,1
ps=6:0,1,1,1,1

Nr.83
pr=3:
Ds=6:

v=232
1,0,2,4,0
1,0,2,1,2
'ps=6:0,0,22,1
b3 = 3: 0:070:2s1
Groupsize: 6

® @ @ @

Nr.84 v=32
pr=4:0,14,0.2
ps=2:0,2,4,0,0
ps=28:0,1,1,1,2
ps=4:0,021,1

Groupsize: 8

Cpr=4:

Nr.85 v=32
0,2,4,1,0
0,0,4,0,2
ps=8:01,1,1,2
re=4:0,0,2,0,2
Groupsize: 8

p5=2:

NI‘.86 v = 32
pr=4:1,0.04,2
pe =8:1,1,0,2,2
ps=2:0,0,04,0
p3=4:0,00.21

Groupsize: 8

Nr.87 v =32
pr=8:1,12,0,3
ps=4:1,000,4
p4=2:0,0,0,0,4
p3=4:0,0,1,0,2
Groupsize: 8

S S

Nr.88 v =32
pr=8:11203
ps=4:10,0.04
ps=2:0,00.04
p3=4:001,0,2
Groupsize: 8

Nr.89 ¢ =32
pr=28:1,201.3
Ps=2:2,0,0,04
pa=4:0,0,004
p3=4:0,0,01,2

Groupsize: 8

Nr.90 v =32
pr=28:1,20,1,3
pe=2:2.0,0,0,4
ps =4:0,0.0,0,4
p3=4:0/0,0,1,2

Groupsize: 8

Nr.91 ¢ =32
pr=8:1,1,0,14
ps=2:0,20,04
ps=4:1,0012
p3=4:0,1,0,0,2

Groupsize: 4




Nr.92 v =236
D7 = 4: 0,1,4,2,0
pe =4 : 0,2,2,0,2
ps=8:0,0,2,1,2

ps=4:0,1,02,1
Groupsize: 8

Nr.96

pr=4:
Pe=28:

v=236
1,0,2,4,0
1,0,1,2,2
ps=4:001,22
p3=4:0,00,2,1
Groupsize: 4

&

Nr.100 v =36
pr=6:0231.1
ps =2:0,0,3,0,3
ps =6:0,1,0,1,3
py=6:0,1,1,02
Groupsize: 6

&

Nr.93
pr=4:
Ds =4:

v=36
0,0,4,1,2
0,2,2,1,1
D; = 8: 0,1,1,1,2
py=4:0,022,0

Groupsize: 8

: 0,0,1,2,0
Groupsize: 8

Nr.101 v =36
pr=6:0,23,1,1
ps =2 :0,3,0,0,3
ps =6:0,1,1,0,3
P4 = 6: 0‘0112
Groupsize: 6

Nr.94

v =236
pr=4:0,142,0
ps=4:0,1,2,1,2
ps=8:0,1,11,2
ps=4:002]1,1
Groupsize: 8

: 0,0,1,0,2

Nr.102 v =36
pr=6:1,2,02.2
ps =6:0,2,0,2,2
ps=6:0,0,0,22
p3 =2:0,0,0,0,3
Groupsize: 12

Nr.95
pr=4:
Ds=38:

v=36
1,0,24,0
1,0,1,2,2
ps=4:0,01,2,2
p3=4:0,0,0,2,1
Groupsize: 8

&

Nr.99
pr=26:
Ps=2:

v =36
0,1,2,0,4
0,3,3,0,0
p; =6:0,2,0,1,2
ps=6:0021,1

Groupsize: 12

B

Nr.103 v =36
pr = 6: 1,2,0,2,2
pe =6:0,2,0,22
py=6:0,0,022
p3=2:0,0,00,3
Groupsize: 12




P> ® ® b

Nr.104 v=36
pr=6:11,032
s =6:0,201,3
pa=6:0,1,021
rs =2:0,0,0,0,3
Groupsize: 6

Nr.108 v =36
pr=8:11023
ps=4:01,0,14
ps=4:1,0,0,1,2
p3=4:0,10,0,2
Groupsize: 4

Nr.112 1 =38
pr=6: 02212
ps =3:0,2,2,0.2
ps=6:01.11.2
ps=6:001172
Groupsize: 6

Nr.105 v=36
pr=6:1,00,2,4
pe=6:0,2,0,2,2
ps=6:0,202,0
p3 =2:0,0,0,0,3
Groupsize: 4

Nr.109

pr=8:11014
pe =4:120,1,2
ps=4:0,0,0,2,2
p3 =4:0,00,1,2
Groupsize: 4

Nr.113 v =38
pr=6:0,12,22
ps =3:0,0,2,0,4
ps=6:0,20,1,2
py=6:0,12,0,1
- Groupsize: 12

v=236

Nr.106 v =236
pr=6:0,2,0,1,4
ps =6:1,202,1
ps =6:0,0,0,2,2
ps =2:0,0,0,3,0
Groupsize: 12

Nr.110 v =38
pr=6:0,221,2
ps =3 : 0,0,4,0,2
ps=6:0,0,1,2,2
ps =6:0,2,0,0,2
Groupsize: 12

Nr.114 ¢ =38

pe=3: 0,‘2;0;0;4
p; =6:0,1,2,0,2

ps=6:00,1,1.2
Groupsize: 12

Nr.107 v =36
pr=6:03,02,2
ps =6:1,1,0,2,2
ps =6:0,0,0,1,3
p3=2:0,0,03,0
Groupsize: 12

Nr.111 v =38
pr=6:021,22
ps =3:0,0,0,2,4
ps=6:02201
ps=6:0,0,20,2
Groupsize: 12

Nr.115 v =40
pr=8:1,03.1.2
pe =2: 2,0,0,0,4
p; =8:0,0,2,0,3

‘p3=4:0,00.1,2

Groupsize: 4




Nr.116 v =42
pr=6:1,1,0,3,2
ps=9:02,02,2
ps=6:0,00,3,1
p3 =2:0,0,0,0,3
Groupsize: 6

Sy

Nr.120 v=44
pr=6:0,0,22,3
ps =6:0,2,2,0,2
ps=6:0,10,2,2
pe=6:01120
Groupsize: 12

@
Nr.124 =44
p;=6:0,1222
ps =6:0,2,2,0.2
ps =6:0,0,1,2,2

py=6:01,02]1
Groupsize: 12

v =44

Nr.117
pr=6:0,1222
pe=6:0,2,20,2
bs = 6: 01110)2:2
py =6:0,01,2,1
Groupsize: 12

Nr.121 v =44
D7 = 6:0,1,23,
ps =6:0,0,1,2,3
ps=6:0,201,2
ps=6:0,120,1
Groupsize: 6

Nr.125 v =44
pr=6:0,1,0.24
pe=6:0,22,02
p; =6:0,1,22,0
py=6:0012]1
Groupsize: 12

&

Nr.118 v =44
pr=6:02212
ps=6:01,22,1
p; =6:0,1,0,2,2
ps=6:001,1,2
Groupsize: 6

Nr.122 v =44
pr==6:0,1,13,2
pe =6:01,1,13
ps=6:021]1,
ps=06:0,021,1
Groupsize: 6

Nr.126 v =44
pr=6:0123,1
ps=6: 02103
ps=6: 002,12
pe=6:01021

Groupsize: 6

23

Nr.119 v =144
p;=6:0,02.23
ps =6:0,2,2,0,2
ps =6:0,1,0,2,2

ps=6:01,120
Groupsize: 4

Nr.123 v =44
pr=6:01222
pe=6:02,1,1,2
ps=6:01112
ps=6:0,01,2,1

Groupsize: 6

Nr.127 v=44
pr=6:0,223,0
ps =6:0,1,0,2,3
ps =6:0,1,2,0,2
py=6:0,0,11,2
Groupsize: 12




@ & @ @

Nr.128 ¢v=44
pr=6:0,21,2.2
ps =6:0,0,3,1,2
D5 =6: 0,0,1,3,1
ps =6:0,2,0,0,2
Groupsize: 6

&

Nr.132 v=44
pr=6:0,0223
ps =6:0,2,2,0,2
ps=6:0,1,0,2,2
pe=6:0,1,1,2,0
Groupsize: 12

Nr.136 =44
Ps=6: 021,12
ps=6:0,021,2
py=6:0,0,0.22
Groupsize: 12

Nr.129 v =44
pr=6:0,223,0
Ps = 6: O:1a1:1:3
ps =6:0,0,2,1,2
ps=6:0,1,01,2
Groupsize: 6

Nr.133 v=44
pr=6:02212
ps =6:0,0,32,1
ps =6:0,0,0,3,2
ps=6:0,2,0,0,2
Groupsize: 12

Nr.137 v =44
pr=6:0,1,1,3.2
Ps=06: 0,1,1,1,3
p;=6:021,1,1
ps=6:0,021.1
Groupsize: 6

Nr.130

v=44

pr=6:0,01,33
pe =6:0,12,0,3
ps =6:0,2,0,2,1
ps=6:0,12,1,0

Nr.134

24

Groupsize: 6

v=44

pr=06:0,2,131
ps=6:0,1,2,03
ps =6:0,0,2,2,1
ps=6: 0,1,0,1,2
. Groupsize: 6

Nr.138 v =144
pr=6:01132
ps=6:0.1,1,1.3
ps=6:0.21,1,1
ps=6:0,0,21,1
Groupsize: 2

Nr.131 v=44
pr=6:0,2,2,1,2

D=6 0,1,2,2,1

ps=6:0,1,0,2,2
ps=6:0,01,1,2
Groupsize: 6

Nr.135 v=44
pr=6:0,2,202,1
Dps=6:011,2.2
ps=6:011,1,2
ps=6:0,01,1,2
Groupsize: 6

Nr.139 v =44
pr=6:0,11,3.2
pe =6:0,1,1,1,3
D5 =6 0,2,1,1,1
ps=6:00,21,1
Groupsize: 2
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Nr.140 v=44
pr=6:021,22
ps=6:0,1,21,2
D5 = 6: 0,1,1,2,1
ps=6:0,01,1,2
Groupsize: 6

Nr.144
p;=6:0,1,3,1,2
Ds = 6: 0,2,1,2,1
ps =6:0,1,0,1,3
ps=6:0,0,1,2,1
Groupsize: 6

v=44

Nr.141 v=44
pr=6:0,2122
=6:0,0,04,2
ps =6:0,22,0,1
ps=6:0,02,0,2
Groupsize: 12

Nr.145 v=44
pr=6:0,1,31,2
P = 6: 0)2:1:2:1
ps=6:01,0,1,3
ps=6:0,01,2]1
Groupsize: 6

Nr.142 v =44
pr=6:0,2221
ps =6:0,0,2,2,2
p; =6:0,1,0,2,2
ps=6:0,1,1,0,2
Groupsize: 12

Nr.146 v =44
pr=6:00223
Pe=6: 02202
Ps = 6: 0,1,0,2,2
pe=6:0,1,120
Groupsize: 4

Nr.143 v=44
pr=6:0,2,2,30
ps =6:0,2,1,0,3
ps =6:0,0,2,1,2
ps=6:0,0,0,2,2
Groupsize: 12

Nr.147 v=44
pr=6:0,03.2.2
pe=6:0,2022
ps =6:0,0,2,0,3

ps =6:0,2,0,2,0

Groupsize: 12

%@

Nr. 148
P =2: 1,0,2,1,7
ps=4:1,1,1,1.1
py=2:
p3=2:

L—‘)O
=

: 0,0,2,0.2
: 0,0,2,1,0
Group31ze. 4

Nr.149 v =24
2:1,0,24.0
ps=4:0.1122
ps=4:1111,1
py=2: 00,220
ps=2:00,2,0,1
Group51ze. 4

Nr.150 v =24
pr=3:1,2,2.0,2
ps =1:0,06.0,0
p;=6:0,1,21,1
py=3:0,0,2,0,2
p3=1:0,0,003
Groupsize: 6

Nr.151 v=24
pr=1:11122
ps =2:0,20,04
ps =2:12,0,0,2
py=+4:01,1,11
ps =2:0.0,1,0,2

Groupsize: 4
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Nr.152 v=24
pr=4:12]1]1,2
ps=2:1,2,1,0,2
ps=2:0,201,2
pys=4:0,01,1,2
p3=2:0,00,1,2

Groupsize: 4

Nr.156 v =38
pr=6:01,123
pe=6:1,1,1,12
ps =3: 1,0,0,2,2
ps=3:0,0,0,2,2
p3=3:0,01,20

Groupsize: 6

Ds = 6 0,1,2,1,2
ps =6:0,1,0,2,2
py=3:0,0,2,2,0
p3 =2:0,0003

Groupsize: 12

v =28
1,1,3,1,1
0,1,3,0,2
0,0,2,1,2
ps=2:1,001,2
p3=2:0,1,0,02

Groupsize: 4

Nr.153
pr=4:
p5=2:
p5=6:

Nr.157 v =40
pr=28:10114
pe=4:1,1,2,0,2
ps=4:0,1,0,2,2
ps=2:0,0,2,2,0
D3 = 4. 0,0,0,1,2
Groupsize: 4

26

Nr.154 v =28
pr=4:1212]1
ps=4:02,112
p; =2: 100,22
py=4:0,00,2,2
p3=2:00,10,2
Groupsize: 4

Nr.158 v =42
pr =6:0,2,0,2,3
ps =6:00,222
ps =6:1,0,2,2,0
ps = 3:0,0,0,0,4
p3 =2:0,0,3,0,0

Groupsize: 12

Nr.155 v =36
pr=6:0,1,2,2,2
pe =3 :0,2,0,04
ps =6:1,0,2,0,2
ps=3:0,0,0,2,2
p3=2:0,0,3,0,0

Groupsize: 12

Nr.159 v =42
pr=6:0,13,21
ps=6:10122
ps=6:0,1,01,3
ps =3:0,0,2,0,2
p3=2:0,0,0,3,0
Groupsize: 6




4 List 3: Selected face-regular simple polyhedra
with b > 8

.
5

G

G

Nr.l v=24
pe=2: 3,0,0,6,0,0,0
pe = 6: 2,0,0,2,0,0,2
p3 =6:0,0,0,2,0,0,1

Groupsize: 12

=
@D

Nr4 v=20
ps=3:2,220,0,2
ps=3:0,1,20,0,2
ps =3:1,0,1,0,0,2
p; =3:0,1,0,0,0,2

Groupsize: 6

&

Nr.7 v=24
ps=2:212120

,,,,,

pr=2:20120.2
ps=2:20012]1
ps=2: 020,012
py=2:0,1,2,00,1
ps=4:0,00,1,1,1

Groupsize: 4

Nr.2 v=24 Nr.3 v=24
ps =2 : 0,3,6,0,0,0,0 Py =2: 3,0,0,6,0,0,0
ps =6 :0,2,1,0,0,0,2 ps =6: 2,0,0,2,0,0,2
py=6:0,1,2,0,0,0,1 p3 =6:0,0,0,2,0,0,1
Groupsize: 12 Groupsize: 12

Nr.5 v=24 Nr.6 v=24
ps=2:0,4,0,4,0,0 ps =2:220,04,0
ps =4:0,4,0,0,0,2 pr=4:22001,2
ps=8:0,1,0,2,0,1 ps=4:01,00,2,1

Groupsize: 16 p3 =4:0,0,00,2,1

Groupsize: 8

G

Nr.8 v =16 Nr.9 =24

pe =1: 3.3,0,3,0.0,0 pe =1: 3,03,0,3,0,0
ps=3:12.0,2,0,0,1 pr=3:122100,1
py = 3:1,0,0,2,0,0,1 ps = 1:0,3.0,0,3,0,0
ps=3:0.1,01,0,0,1 ps =3:1,1,0,0,2,0,1

Groupsize: 3 pg =3:0,01,1,2,0,0

D3 = 3: 0,0,170,1,0,1
Groupsize: 3




5 List 4: all 9 face-regular 4-valent polyhedra

with b=4

For the polyhedra in this list, the graph induced by the 4-gons is interesting: in Nrs
"6,7,9 the graphs are two Cy, Cs and the truncated Octahedron respectively.

Nr.l v=6
P3 = 8 3
Groupsize: 48
Group: Oy

Nr4 v=12
Dy = 6: 4,0
D3 = 8: 0,3

Groupsize: 48
Group: O,

Nr.7 v=14
py=8: 2.2
D3 = 8: 12

Groupsize: 8
Group: Dyy

Nr.2 v=8
Ps = 2: 4,0
D3 = 8: 2,1
Groupsize: 16 -
Group: Dy

Nr.5 v=14
Pg = 8: 1,3
D3 = 8: 2,1

Groupsize: 16
Group: Dy,

Nr.8 v =22
Py = 16: 13
p3 =8 1,2
Groupsize: 8
Group: Dyy

4

Nr.3 v=10
Dy =4: 2,2
p3=28: 2,1

Groupsize: 16
Group: Dy,

4

Nr6 v=14
Py =8: 2,2
D3 = 8: 12

Groupsize: 16
Group: Dy

Nr.9 =30
Dy = 24: 13
P3 = 8: 03

Groupsize: 24

Group: O




6 List 5: all face-regular 4-valent polyhedra Wlth
b=>5 and up to 24 faces

Among the polyhedra of Lists 4 and 5 there are: the Octahedron, three semi-regular
‘ones (4-, 5-gonal antiprisms and the Cuboctahedron) and three regular-faced (Nr.
3 of List 4 and Nrs.4 and 6 of List 5, which are the elongated square dipyramid, the
pentagonal gyrobicupola and the pentagonal orthobicupola, having number 15, 31
and 30, respectively, in the list of 92 polyhedra in [Joh66]).

Nr.2 in list 5 is the Octahedron truncated and capped on 4 vertices of an induced
Cy. Nr.3 is the elongated antiprism. Nr.5 is the dual rhombic Icosahedron (2-
elongated 5-gonal antiprism).

9 W B

Nr.l v=10 Nr.2 v=22 Nr.3 v=15

ps =2: 5,0,0 ps = 8: 2,0,3 ps = 2: 5,0,0
p3 =10: 2,0,1 p3 =16: 2,0,1 py = 5: 4,0,0
Groupsize: 20 Groupsize: 16 ps = 10: 0,2,1
Group: Dsq Group: Dy Groupsize: 20
Group: Ds
Nrd4d v=20 Nr.5 =20 Nr.6 v=20
ps =2: 0,5,0 ps = 2: 3,0,0 ps =2: 0,50
py =10: 3,0,1 py =10: 2,2,0 py=10: 2,1,1
p3 =10: 0,3,0 p3 =10: 0,2,1 p3 = 10: 1,2,0
Groupsize: 20 Groupsize: 20 Groupsize: 20
Group: Dsqy Group: Ds4 Group: Dsp,




7 List 6: all 26 6R; Fullerenes

The polyhedra 1,3,6,12,16,18-21,24-26 of this list are face-regular. They are the
polvhedra 23-34 of List 1, respectively.

BB 6 &

Nr.l v=24 Nr.2 v=26 Nr.3 v=28 Nr4d4d v=28
pe =2:0,0,6,0 ps =3:0,0,6,0 ps=4:0,0,6,0 ps =4:0,0,5,1
Groupsize: 24 Groupsize: 12 Groupsize: 24 Groupsize: 4

» & ® &

Nr.5 v=30 Nr.6 v=232 Nr.7 v=232 Nr.8 v=32
bs = S: 01014.72 Pe = 6: 01014:2 Ps = 6: 0a01571 Ds = 6: 0101472
Groupsize: 20° Groupsize: 12 Groupsize: 6 Groupsize: 12

®@ 6 e

Nr9 v=32 Nr.10 v=236 Nr.11 ¢ =236 Nr.12 ¢ =38
ps =6:0,0,4,2 pe =8:0,04,2 ps =8:0,0,3,3 pe =9:0,0,4,2
Groupsize: 4 Groupsize: 8 Groupsize: 4 Groupsize: 6

® @ &

Nr.13 v=40 Nr.14 v =40 Nr.15 ©v=40 Nr.16 v =44
Ps=10:0024 ps=10:004,2 ps=10:0042 ps=12: 0033
Groupsize: 20 Groupsize: 4 Groupsize: 20 Groupsize: 12

30
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Nr.l7 v=48 Nr.18 v=52 Nrl9 v=5 Nr.20 v=60
ps =14:0,0,3,3 ps =16 : 0,0,3,3 ps = 18:0,0,2,4 ps =20: 0,0.3,3
Groupsize: 6 Groupsize: 12 Groupsize: 24 Groupsize: 120

Nr.21 v =68 Nr.22 v=68 Nr.23 v=72 Nr.24 v=80
ps =24:0,0,2,4 ps =24 :0,0,2,4 ps = 26: 0,0,2,4 ps =30: 0,0,24
Groupsize: 24 Groupsize: 12 Groupsize: 8 Groupsize: 120

Nr.25 v=280 Nr.26 v =140
pe = 30: 0,0,2,4 ps =60 :0,0,1,5
Groupsize: 20 Groupsize: 60
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Face-regular k-valent bifaced polyhedra

In this section we will study the case where faces of exactly two sizes a < b occur.
Bifaced polyhedra and similar concepts are well studied, e.g. in [Mal70], [GM66],

[GZ74]. [GoT5). {Go77].[Za80]. [JT84]. {JT90], [1189]. [Ow84]. [Ow86] [J095).
Clearly. in this case the f-graph from the proof of Theorem 1 is the K3, so we

get the equation py = p, 5= f(::;

By using kv = 2e = ap, + bp, and the Euler formula v—e+(p.+py) =2, we get

* 4k
(*) P = (2k+2a-ak) - (bk—25— %) Jp”

We will use the following notation for operations on polyhedra:

tetrakis: the tetrakis of a polyhedron is obtained by putting a pyramld on 4-gonal
faces.

4-triakon: the 4-triakon of a polyhedron is obtained by partitioning each triangle
into a ring of 3 4-gons by putting a vertex in the middle and connecting it to
the midpoint of every edge in the boundary. -

5-triakon: a 3-triakon of a polyhedron is obtained by partitioning each hexagon
into a ring of 3 pentagons by putting a vertex in the middle and connecting
it to the midpoint of every second edge in the boundary. (An example of
two different face-regular bifaced polyhedra, coming both as a 5-triakon of the
truncated Octahedron, is given in Remark 1 after the Theorem 5 below.)

Theorem 2 Fork > 3 there is only one infinite series of face-regular (a, b)-polyhedra,

that is the Antiprisms APrism, for any b > 3.

Apart from this, all face-regular k-valent (a,b)-polyhedra have (k;a) = (4;3) and
b=4,5.6;

They are:

b= 4: 7 polyhedra, given as Nrs 3-9 in List 4;

b = 5: the Icosidodecahedron and Nr 2 in List § (the tetrakzs of the 0ctahedron
truncated on all but two opposite vertices);

b = 6: the tetrakis of the (fully) truncated Octahedron.
Theorem 2 will follow from the following 4 Lemmata:

Remark

Theorem 2 shows that the largest 4—valent face-regular (a, b)-polyhedra have 30
vertices (i.e. 32 faces) and @ = 3. They have (p3,b) € {(8.4),(20,5),(24,6)} and
are Nr 9 in List 4, the Icosidodecahedron, the tetrakis of the truncated Octahedron,
respectively. The largest 3-valent face-regular (3, b)-polyhedron also has 32 faces. It
is the fully truncated Dodecahedron with (ps,b) = (20, 10).

As we will see below, all three largest 3-valent face-regular polyhedra have 140
vertices. They are unique largest (4, b)-polyhedron (the 4-triakon of the truncated
Dodecahedron; so p = (py = 60,p1s = 12)) and both largest (5, b)-polyhedra: a
5-triakon of the truncated Icosahedron;so p = (ps = 60, p1p = 12)) and the fullerene
Ci40(1) (the truncation of the dual snub Dodecahedron on all 12 5-valent vertices;

so p = (ps = 12,ps = 60)).

32
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Lemma 1 The only possibilities for (k;a,b) are (5;3,4),(4;3,5),(3;3,0),(3;4,b)
and (3;5,0). .

In all other cases the denominator in (*) will be non-positive even for 4}{—:—3 =

the smallest possible value.

Lemma 2 The case (k:a.b) = (5;3,4) is not possible, so there is no face-regular
5-valent polyhedron.

Proof.

The denominator in (*) is positive only for (f(a,b), f(b,a)) = (1,4),(1,3).

In the first case any 4-gon is surrounded by 12 3-gons, which implies neighbouring
4-gons in the next layer — a contradiction. In the case (1,3), any pair of adjacent
4-gons is surrounded by 16 3-gons, so the next layer contains a 4-gon with 2 4-gonal
neighbours - again a contradiction.

a

In the following lemma we will exclude some of the theoretically possible param-
eters for k = 4.

Lemma 3 All cases for (k;a) = (4;3) not being contained in the following list are
imposstble: '

a): b=4: the 8 polyhedra Nrg 2-9 in List 4;

b): b=5: the Icosidodecahedron with f(3,5) =3, f(5,3) = 5,v = 30;

c): b > 3: the infinite class of antiprisms APrismy;

d): b>3: (f(3,b), f(5,3) = (1,b—3), (p3s, ps) = (80— 24.8), v = 8b — 18;
e): (f(3,0), f(6,3) = (1.6—2),(ps,ps) = (4b— 8,4),v =46 6.

Proof. For b > 4 the denominator in (*) is positive only if

1) (f(3,5), f(6,3)) € {(1,6-3),(1,6—2),(1,b—1),(1,b)}, or

2) be {5,6,7) and (£(3,8), f(5,3)) = (2,b), or

3) be {5,6) and (£(3,b), f(5,3)) = (2,b— 1), or

4) b=5and f(3,b), f(b,3)) € {(2,3).(3,4),(3,5)}-

The subcase (1,5 — 1) in case 1) is not possible, because otherwise p; = - b;‘ ,
ps = &. The subcases (1,5),(1,b—3),(L,b — 2) of the case 1) are, respectively, the
cases c, d and e of Lemma 3. '

Cases 2 and 3 are not possible, because we get 3 3-gons on 3 consecutive edges
of each b-gon; so, the 3-gonal neighbour of the 3-gon in the middle, will be adjacent
to 2 3-gons, a contradiction.

The subcase (3,4) of 4 is not possible, since the 3-gonal neighbours of 2 adjacent
5-gons containing a vertex of the intersection, would share an edge.

In the subcase (2,3) of 4, all 3 triangles neighbouring a pentagon in a row
would imply a triangle neighbouring 2 other ones, so assume we have a 5-gon and
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3 neighbouring 3-gons not all in a row. But then one of the 5-gonal neighbours has
all 3-gonal neighbours in a row - again a contradiction.
The remaining subcase (3.3) of 4 is case b of Lemma 3.

a

Lemma 4 The cases d and ¢ of Lemma 3 are reahzed only by polyhedron Nr.3 in
List 4 and the tetrakis of suitably truncated Octahedra, given in Theorem 2.

Proof.

In both cases all 3-gons are organized in 4-cycles, surrounded by b-gons, since
otherwise we will get APrism;. In case e of Lemma 3 the number of edges between
two b-gons is zzi_ﬂb_i‘)l = 4. So, the only possibility is b6 = 4 and Nr 3 of List
4 is unique reahzatlon (it is the dual of the Octahedron, truncated on 2 opposite
vertices). In case d of Lemma 3, the number of (b — b)-edges is 12. This implies
b € {4,5,6} and we get the tetrakis of 3 suitably truncated Octahedra, the first one
being Nr 5 of List 4 (the elongated Nr 3 of the List).

]

Theorem 3 All face-regular cubic (3, b)-polyhedra have b < 10.
They are 14 special truncations of the Tetrahedron, the Cube and the Dodecahe-
dron: :

e the 1- and 4-truncated Tetrahedron;
e 2(b— 4)-truncated Cubes (one for b € {5,7,8} and two for b=6);
e 4(b— 5)-truncated Dodecahedra (one for b=6,9,10 and two forb=17,8).

Proof.

Due to the 3-connectedness of polyhedra we get f(3,b) = 3 for all cubic (3, b)-
polyhedra. So each triangle is isolated and 3ps < v = p3(2 + T(if,—s)) — 4. Together
with equality (*) and ps > 0 we get f(b,3) > b—5 and f(b,3) < min(5,%). So
b < 10.

Actually this is a result by Malkevitch ([Mal70]) for general (that is: not only
face-regular) cubic (3, b)-polyhedra.

The remaining possibilities for b > 6 are (b. f(b,3);v) € {(10,5;60), (9, 4;52),
(8,3;44), (7.2;36), (8,4;24) and (7.3;20). The first 4 cases are realized by trunca-
tions of the Dodecahedron giving only one polyhedron in the first two cases and two
non-isomorphic polyhedra in the others. The last 2 cases are realized by trunca-
tions of the Cube (giving a unique polyhedron in every case). For b < 6 all wanted
polyhedra are Nrs 4,5 and 10-13 of List 1.

Nrs 1-3 of List 2 are the 6-truncated Cube and two 8-truncated Dodecahedra.
For b > 6 there remain 3 (3,8)-polyhedra, one (3,9)- and one (3,10)-polyhedron.

a

Remark :
If we do not require 3-connectedness in Theorem 3, more graphs exist, e.g. one
for every b > 9, divisible by 3 with pp = 2,p3 = $,v = 532.
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Theorem 4 There is only one infinite family of cubic (4, b)-polyhedra, that is Prism,
forany b 2> 3;
The finite families are:

1) Two 80-vertex (4,7)-polyhedra. coming as the truncation of the dual Rombicuboc-
tahedron or dual Miller's solid (its twist) on all 18 4-valent vertices;

2) 14 polyhedra, coming from those of Theorem 3 by the 4-triakon decoration; they
have (b,v) € {(15,140), (13.116), (11,92), (9,68), (7,44),(12,56), (10,44),
(8,32), (6,20);(9,28) (6,14)}. There are ezactly 2 non-isomorphic polyhedra
for the 3rd, 4th and 8th case and one for the others.

3) 3 polyhedra (besides the prism) for b= 5 and 6 for b = 6 not covered by previous
cases: Nrs 7-9 and 17-22 of List 1;

4) 2 44-vertez (4,7)-polyhedra Nrs 5,6 of List 2 (coming by suitable doubling of all
6 isolated 4-gons in Nrs 21,20 of List 1);

5) the 80-vertez (4,8)-polyhedron (coming by suitable doubling of all 12 isolated 4-
gons of the truncation on all 12 {-valent vertices of the dual of the unique 18-
vertez 4-valent (3,4 )polyhedron given below, the 3-gons of which are organized
into 2 isolated ones and 3 isolated pairs);

Proof.

Possible values for f(4,b) are 2,3 and 4. The case f(4,b) = 2 is possible only if
the 4-gons form a ring (giving a prism) or isolated 3-rings of 4-gons, which is exactly
case 2 of Theorem 4. '

If f(4,b) = 4, all 4-gons are isolated. So 4py < v. The equality (*) and py > 0
imply 2(b—6) < f(4,b) < min(3.2). So b < 7 and the only possibility for b = 7 is
f(b,4) = 3,py = 18,pr = 24;v = 80. It is exactly case 1 of Theorem 4.

In the remaining case f(4,b) = 3, the 4-gons are organized into isolated adjacent
pairs. So, 68 < v and, using (*) and ps > 0, we get M < f(b,4) < min(5,%),
which unphes b < 9. Moreover, the only possible values for (b, f(b,4)) are (9,5),
(8,4), (7,2), (7.3) and (7,4). The last subcase is not possible, because it gives
Py = 4‘5—8 The subcase (7,3) gives v = 44. A computer search gave that it
is exactly case 4 of the theorem. The remaining subcases leave 3 possibilities:
(b, £(b,4); ps, pv; v) € {(T7,2; 24, 36: 116), (8, 4: 24,18, 80), (9, 5; 60, 36; 188) }. The first
of them can easily be removed by a geometric argument. For the last one there are
8 vertices contained only in 9-gons. It is easy to show that only one out of two
possible ways in which the pairs of 4-gons can neighbour a 9-gon containing such a
vertex can occur. Using this, geometric arguments give a contradiction when trying




to construct the polyhedron. The middle one is realized by the polyhedron of case
5 of the theorem. The uniqueness follows from its construction.

Clearly, all remaining wanted polyhedra have b < 6 and so they are covered by
List 1: it gives the last entry of case 3 in Theorem 4.

a

" Remark :
The largest face-regular cubic (4,6)- and (5.6)-polyhedra are also (just like in
case 1 of Theorem 4) the dual tetrakis or dual snub Cube and dual pentakis (putting
pyramids on all 5-gonal faces) of the snub Dodecahedron.

Theorem 5 There ts only one infinite family of face-regular cubic (5,b)-polyhedra
with b > 6:

Barrel, (two b-gons, separated by two rows of b 5-gons) for any b.

The finite families are:

1) 12 (5,6)-polyhedra: Nrs 23-34 in List 1;

2) a unique 92-vertez (5,7)-polyhedron, organized into concentric 3-, 15- and 12-
ring of 5-gons, separated by 6-, 9- and 3-ring of 7-gons (as given below);

3) a unique {4-vertez (5,7)-polyhedron (Nt 9 in List 2) and 8 polyhedra with f(5,8) =
2, also given below: unique 140-vertezr (5,10)-polyhedron, unique 56-vertez
(5 8)-polyhedron and unique 92-verter (5, 8)-polyhedron with (ps,ps; £(8,5)) =
(36,12; 6).

Proof.

The case f(3,b) = 1 gives exactly Barrely. If f(5,b) = 5, then all 5-gons are
isolated; so 5ps < v. So (*) and ps > 0 imply 5(b — 6) < f(b,5) < 3 givingb< 7.

If f(a b) = 4, then all 5-gons are organized into isolated pairs; so 82 < v. Again
we get 4(b—6) < f(b,5) < 3and b< T.

The case f(5,6) = 3 has 5-gons organized in disjoint rings. Let ¢ denote the
number of 3-rings among them, so 3ps + ¢t < v. The same count as above, gives

3(b—6) < f(b,5) < min(5, }_bi%‘fl;u_) So b = 7 is the only possibility for b > 6.

In the case b = 7 we have either f(7,5) = 4 and t < 20, or f(7,5) = 5 and
t < 2. The first subcase gives ps = 48, p; = 36 and it should be 164-vertex
(5,7)-polyhedron with all 48 5-gons organized into isolated rings. V.P.Grishukhin
(private communication) established, case by case. non-existence in this subcase.
The second subcase is f(7,5) = 3, i.e. 7-gons also should be organized in isolated
rings. We get ps = 30, pr = 18 v = 92. So 3 and 7-gons should be organized in
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concentric alternating rings and only two vertices belong to three faces of the same
type. It is easy to show that case 2 of the theorem is the unique possibility for such
a polyhedron.

All possibilities with b = 6 are covered by List 1 (it is case 1 of the theorem). The
only remaining case is f(5.b) = 2.b > 6. Using (*). we get 2(b — 6) < f(5.5) < b.
Clearly. py = pa ff;h} = 1(6.5)':"__,(,,-5) andv = 2ps+2m—4 = ﬁ%% So all possi-
 bilities with positive integer v are given by f(b,5).=b—i,6 < 1l—-ifor0< i< 4. In
subcase f(b,5) = b the b-gons are all isolated. It is easy to see that b should be even
and that for b € {8.10} the only possibilities are the 140- and 56-vertex polyhedra
in case 3 of the theorem. In subcase f(b,3) = b — 1 an attempt to construct the
structures easily gives the impossibility for b € {9, 8} and unicity (the 44-vertex poly-
hedron of case 3 of the theorem) for b = 7. The impossibility of cases (b, f(b,5);v) =
(7,5;52),(7,4; 68) was checked with the help of a computer. The remaining 4
cases should be (5,b)-polyhedra with f(5,b) = 2, having (b, f(b,5);ps, ps;v) =
(7,3; 36, 24; 116), (8, 5; 60, 24; 162), (8, 6; 36, 12;92), (9, 7; 84, 24;212). The third pos-
sibility is realized, uniquely, by the 92-vertex polyhedron of the case 3 in the theorem.
It and the non-existence in other 3 subcases can be checked by following easy way.
Let us fix a b-gon Ay = (1,2,...,5) and, without loss of generality, suppose that
other b-gon, say A,, adjacent to Ao by edge (1,2). In all 4 subcases it is not possible,
that A, was adjacent to a 5-gon by the edge (2,3) and to a b-gon by the edge (3,4),
because then this 5-gon will have 3, not 2 b-gons as neighbours. Now, consider the
situation when A, is adjacent to 5-gons by (2,3) and by (3,4), but not by (4,5). A try
to construct a polyhedron, respecting our conditions on f(5, ), f(b, 5), will continue
uniquely and lead to impossibility always except the subcase 3. (Most difficult is
the situation when all 6 — f(b, 5) b-neighbours of the original b-gon A, are adjacent
to it in a row: by (1,2), (2,3) and so on.)

o

Remark 1 -

‘The polyhedron Nr 24 of List 1 (i.e. the fullerene Fs(7)) and the 3-rd and 2-nd
polyhedron in case 3 of Theorem 5 come by a 5-triakon decoration of the (fully)
truncated Tetrahedron, Octahedron and Icosahedron, respectively.

The 4-th polyhedron of the case 3 of Theorem 5 (92-vertex (5,8)-polyhedron)
comes from face-regular fullerene Fzg(Ty) (Nr 29 of List 1) by following decoration
of (all 6) its hexagons, having two adjacent 5-gons, being adjacent on opposite
edges: put some "H” with sides parallel to above opposite edges, so that hexagon
will be partitionned into 4 pentagons. Above face-regular fullerene comes itself by
a 5-triakon decoration (another one, than one, producing above 56-vertex (5,8)-
polyhedron) of a face-regular 24-vertex (4,6)-polyhedron: truncated Octahedron. -

Remark 2

Above Therems 3, 4 and 5 give together the following classification:

Besides of two infinite families, Prism, and Barrel,. there are exactly 57 3-valent
face-regular bifaced polyhedra. With respect of the number v of vertices, they have
the face-sizes (a, b) as follows.

for v = 140 : (4.13), (3.6), (5.10);

for v =116 : (4.13);

for v =92 : two (4.11), (3,7). (5.8);

for v = 80 : two (4.7), (4.8). two (3,6);
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forv==68:
forv=60:
forv=>56:
for v =52:
forv=44:
for v =38:
forv=236:
forv=232:
forv=28:
forv=24:
forv=20:
forv=16:
forv=14:
forv=12:

two (4,9), (5,6);
(3.10), (5.6);

(4.6). (4.12), (5.6), (5.8):

(3.9);

two (3.8). three (4.7), (4

(5.6}
two (3.7);

.10). (5.6). (5.7):

(3.8). two (4.6). two (4,8), (5,6);

(3.6). (4.9). (5.6):

(4.6), (5.6);

(3?7)7 (4’6); V
two (3,6), (4,5);
(4,5), three (4,6);
(325)7 (376)’ (415)'
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Abstract

It is shown quite generally that ground state energy of two atoms in in-
finite space, interacting via spherical potential which depends only on
the distance between particles, is the lowest in two dimensions. Using
variational procedure, binding energies of helium diatomic molecules,
in infinite and restricted space, are obtained as well. The results de-
rived for helium atoins are in accordance with the lemma.

PACS: 36.90.+f, 31.20.Di




1 Introduction

Many physical phenomena in nature are related to the behaviour of the small
number of particles. Among them, in low temperature physics are supercon-
ductivity, superfluidity and Bose-Einstein condensation. Special interesting
and important cases are systems in which particles are helium atoms: helium
liquids, helium films, liquid drops, atoms in cavities in solid matrices and in
nanotubes. '

The consideration of small systems begins with study of two atoms. They
can be located in both restricted and unrestricted space: in 3 dimensions
(3 D), 2 dimensions (2 D) and 1 dimension (1 D). Of course, real physical
world has been occuring in finite 3 dimensional space. In making models
of different physical situations we are led to consider 2 D and 1 D space.
In such circumstances many physical effects are dominant in corresponding
dimension. '

In this paper, in Sec. I, we prove a general lemma. It relates ground state
energies of two particles in 1, 2 and 3 dimensions in infinite space. It is
assumed that particles interact via spherical potential depending only on the
distance between them. In Sec. II, using variational procedure and employing
the newest potential of the interaction between helium atoms [1], the ground
state energies of helium molecules are obtained. The consistency with the
lemma is demonstrated. :




2 Relations between ground state energies in
different dimensions

We consider two particles which interact via a spherically symmetrical po-
tential V/(1,72), in one, two and three dimensional space. The Hamiltonian
of the system in the relative coordinates reads

hZ
i = —g—A + V(i -7l (1)
where y = —m—L—z— is reduced mass of the particles, m; and m, are the masses -

of the partlcles In the ground state only the "radial" part of the Hamiltonian
is important and the operator A has the form
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9 190 o

AQ = —éﬁ + - 1"67‘ ; in 2D (3)
8 20 )

A = p + - 5 in 3D. (4)

Inequalities between energies in different dimensions may be obtained by

variational ansatz

J9 H, ¥, r=tdrdQr )
[Ux U, ro=1drdQr ’

where n = 1,2,3 denotes the dimension of physical space and dQ' = 1,

dQ? = 27 and d¥® = 4~

E. <

As we study the ground state and having in mind the symmetry of the system
it is useful to write the trial wave functions in the form

\111(7") = ‘1’10(7‘)

1
\IJQ(T') = %\Pgo('l‘)
1
‘Ifg(r) = ;‘I’:go(r). (6)
Introducing trial wave functions in the variational ansatz (5) one finds
1 [ K? p= d? o0
E, < =|—-—— — 2
A / drw1d2w1+/ dr\plwr)] (7)
r
E2 S I—2 / dT‘PQo{d 2‘1’20 + —\1’20} + / dT“I’ V(T)J (8)
I
Eg S T3- / d?"\I;30 l1’30 +/ dT"I} (7‘)}, (9)
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where the normalization integrals read I, = [;° dr¥2,, n=1,23.

The relations (6), (7) and (8) are general. Assuming that ¥, is the eigen-
function in one dimensional case and taking ¥,0=¥;, from (6) and (7) it

follows 2
1 0o 1
Ey, < E| - EEA dr F\I}go; (10)

it means F, < E|.

If it is supposed W3o=U,9, where ¥, is the eigenfunction in 2 D, then from
(7) and (8) one finds )

1 A% o 1
E; < B + —— 2

On the other hand, if ¥ is the eigenfunction in 3 D and W,y = W4, then

E>E+lh2/md1\lﬂ (12)
3 2 I32/L 0 r47‘2 30
The last two inequalities may be joined
1A% o 1 1A% o 1
E -——/ g2 —-—/d—-qﬂ. 1
2+ Is2u Jo dr4r2\Il30 < B < B+ I, 2p Jo r4r2 20 (13)

From the above relation it follows E; < Fs. In a similar consideration from
(6) and (8) follows E3 = E;. In this way it is proved that binding energy of
two interacting particles is the lowest in 2 D. The result is independent on
the statistic of the particles. '

3 Ground state energy of diatomic helium molecules

In order to describe physical systems that contain helium, many potentials
between atoms have been obtained. One of the best is ab initio SAPT po-
tential by Korona et al. [1]; its enlarged forms by Janzen and Aziz [2] are
SAPT1 and SAPT2 which comprise retardation effects. Since the SAPT po-
tential is so precise, it is expected that the effect of retardation forces could
be examined experimentally. It reads

Vir) = €eV*r) | : (14)

8
Vi(r) = Ae *07 _ B fu(br) 22 (15)
. n=3

p2n
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where

2n Nk
fan(byr) = 1 — €7*" Z(b—,;)‘ (16)
k=0 °
and

e = 10°mK, s = 0.03207856 A°

A = 20.7436426 cs = 0.08680214 A®

B = 3.157765 o = 0.31625734 A"°

a = 3.56498393 A" s = 157407624 A"

B = —0.22141687A7% ¢4 = 10.31938196 A'*

b = 3.68239497 A~ cie = 86.00126516 A'C.

As first let us calculate binding energy of two helium atoms in infinite space.
For the ground state we found that a good analytic form of the functions (6)
in all dimensions is

Uoi(r) = exp [— (2)7 - sr] , (17)

where i=1,2,3; a, 7 and s are variational parameters and of course have
different minimization values in 3D (1D) and 2D. The same form of pair
correlations in 3D has recently been used by Bruch (3] to examine the prop-
erties of boson trimers. In 2D, we use the form employed in the paper [4]
and which provides a slight improvement over a variational wave function
introduced in Ref. [5]. Binding energy and parameters are obtained in min-
imization procedure. The results are shown in Table 1. In order to estimate
our variational calculation, and compare the results, corresponding numer-
ical solutions of Schroedinger eq. are presented for HFD-B3-FCI1 [6] and
SAPT potentials as well.

Now, as second, we concentrate on two helium atoms confined by a hard-
walled spherical potential in 3D and circular in 2D. As it was demonsrated
in the paper [4], good variational wave functions of the ground state are

\1103(7‘; d) = lIl()g('l’)jo(TT'T‘/d) (18)

in 3D, and
\DOQ(T; d) = lI’oz(T)Jg(z4:048267‘/60 (19)

in 2D. d is the diameter of the sphere and of the circle. jo is the spher-
ical Bessel function and Jy is the zeroth-order Bessel function.  As in in-
finite space, the ground state energy of the non-interacting system must
be subtracted. The energy of two free particles is %, i=2,3, where Cy =
h?(2.404826)2/2u in 2D and Cs = A’x?/2u in 3D. The results for d=50
A and d=100 A are presented in Table II.

)




4 Discussion

Let us mention that only helium 4 dimer in 3 D has been observed experi-
mentally [7-9] up to now. '

As it is seen in Table 1, binding energies for all helium molecules are con-
sistent with the lemma. Moreover both lighter molecules are not bound at
all in 3 D. Two particles may be kept in 2 D space by an external poten-
tial. It can be realized, for example, in a space between two close, paralel
big plates. Similarly interior of a long and thin cylinder may represent 1 D
space. Of course these "confining" external potentials are not included in
binding energies cited in Table 1.

Since in restricted geometry (in our case sphere and cylinder) external poten-
tials are included partly, the lemma can not be valid. Of course it is correct
in this case as well, if parameters of the geometry (for instance in our case
diameter of sphere or cylinder) are much biggr than the effective range of the
interaction potential. Such behaviour can be recognized in Table 2.

From the "exact" numerical solution of Schroedinger eq. [4] we know that
all combinations of two helium atoms are bound in finite space (in above
sense); the same is in infinite space except two atoms of 3He and one atom
®He and one atom “He which are not bound in 3 D. Let us notice that our
trial function in the case of (*He); is not good enough to reproduce binding in
2 D in both infinite and finite space. As comparision with numerical solution
shows, it is quite good for other cases.

It seems that an interior of a cylinder is a form which could be the easyest to
realize in an experiment. Although we haven’t solved this problem theoreti-
cally, the main energetic characteristics are given by our spherical-models in
3 D and 2D.

Finally let us mention that our calculation in finite space is approximative
one. Namely we assumed that the center of mass of two particles was located
in the center of space symmetry. It was shown in Ref. [4] that this approxi-
mation gives general features of considered systems.
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Table 1: Binding energies in infinite space (in mK) of helium molecules in
2D and for dimer (*He), in 3D (second line), derived by numerical solving
Schroedinger eq. and in variational procedure; variational values are in round
brackets; parameters: a (in &), 5 (dimensionless) and s (in A1), are shown
for the SAPT potential only. Note that our variational wave function is not
flexible enough to predict a bound state of the (°He), dimer in 2D and that
molecules (*He); and *He —* He are not bound in 3D.

Molecule | HFD-B3-FCI1°® SAPT® a v s
(“He), | -394 (-37.7)  -40.7 (-30.03) 2758 4.408 0047
-1.559 (-1.480) -1.871 (-1.762) 2.737 4.49 0.013
CHe), 20,016 0.0
SHe—*He| -4.0(-321) -  -43(351) 2761 4173 0.011
* Ref. [6]
b Ref. [1]
8




Table 2: Binding energies (in mK) of helium molecules in a sphere (3D, first
line) and in a circle (2D, second line) derived in variational procedure for the
SAPT potential; the diameter of both confinements are d=50 A and d=100
A; parameters: a (in A), v (dimensionless) and s (in A-1), are shown for

d=50 A.

Molecule 50 100 a v s

(*He): -138.713 -40.650 2.753 4.41 -0.013
-61.660 -52.133 2.767 4.36 0.02
(°He), -67.086 -10.191 2.782 3.91 -0.058
73.159  14.827 2.798 3.87 ~-0.029
SHe—*He | -94.354 -19.936 2.774 4.10 -0.042
16.718  -7.264 2.794 4.04 -0.011
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Abstract

Similar molecular connectivity terms are capable to model many different properties
of quite different classes of compounds, like : alkanes, amino acids, purines, pyrimidines
and inorganic salts. Modeled properties are : the pH at the isoelectric point, pl, the specific
rotations, the solubility, the side-chain molecular volume, the crystal densities of amino
acids, the solubility of purines and pyrimidines, the solubility of amino acids plus purines
and pyrimidines, the lattice enthalpies of metal halides, the unfrozen water content of
amino acids plus metal chlorides, and the motor octane numbers of alkanes. The internal
formal similurity of these different higher-level molecular connectivity descriptors, which
are derived by a trial-and-error procedure from a medium-sized set of 8 molecular
connectivity indices or a subset of it is striking. Nearly all of them are dominant terms, that
is, they are descriptors which are unable to further enhance the description when they are

used in combinations with other descriptors. -
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Abstract

Similar molecular conneétivity terms are capable to model many different properties
of quite different classes of compounds, like : alkanes, amino acids, purines, pyrimidines
and inorganic salts. Modeled properties are : the pH at the isoelectric point, pl, the specific
rotations, the solubility, the sfde-chain molecular volume, the crystal densities of amino
acids, the solubility of purines and pyrimidines, the solubility of amino acids plus purines
and pyrimidines, the lattice enthalpies of metal halides, the unfrozen water content of
amino acids plus metal chlorides, and the motor octane numbers of alkanes. The internal
formal similarity of these different higher-level molecular connectivity descriptors, which
are derived by a trial-and-error procedure from a medium-sized set of 8 molecular
connectivity indices or a subset of it is striking. Nearly all of them are dominant terms, that
is, they are descriptors which are unable to further enhance the description when they are

used in combinations with other descriptors. -




INTRODUCTION

Recently 5 the modeling of different physicochemical properties of molecules or

materials has allowed to discover quite interesting and powerful descriptors, the molecular
connectivity terms, X = f{x), which are based on graph theoretical invariants, the molecular
connectivity indices. These are second- or higher-level descriptors, derived by a trial-and-error
procedure on medium set of molecular connectivity indices. It is, thus, possible to detect that
interesting relationships exist among many and different molecular and material properties.
Achieved descriptions show that physicochemical properties have a common root in the
chemical graph or pseudograph representation of a molecule, which are the starting ‘material’ to
construct the molecular connectivity indices, the most widely used inyariants in QSPR/QSAR
studies * (see reférences therein). Interesting, the form of these terms, used to describe quite
different properties of different classes of molecules is rather homogeneous.

In this short paper we will review the different properties which can be modeled by the
aid of molecular connectivity terms, check the advantages, over the normal molecular
connectivity indices, of a modeling with such terms and indirectly stress how higher-order
invariants derived from chemical graphs and pseudographs can be the common descriptors of
quite different properties of di"fferent. classes of compounds.

Modeled classes of compounds and properties are : for amino acids (AA) : pH at the
isoelectric point, pl, side—chafn molecular volume, V, specific rotations, SRy, (SRp for D-AA
have just opposite values), crystal densities, CD, solubility, S ; for purines and pyrimidines :
solubility, S ; for a mixed class of amino acids plus purines and pyrimidines: solubility,
S[AA+PP] ; for metal halides : lattice enthalpies, AH,%; for a mixed class of amino acids plus
metal chlorides : unfrozen water content, UWC, and, finally, for alkanes : the motor, MON,

octane number.

METHOD

Molecular connectivity terms are derived with a trial-and én’o; co‘mposition procedure
performed on a set of 8 molecular connectivity indices : {D, D;', O %Y, 'y, % At 1Y
Derivation of these indices from the corresponding graphs or pseudographs (which allow
multiple connections and loops) is a straightforward, and has already been explained elsewhere &
L2 gometimes this medium-sized set can be restricted to a subset of optimal ¥ descriptors,
derived with a combinatorial technique, that is, a technique that searches the entire
combinatorial space spanned by the 8 indices, which means 255 combinations. The choice of 8

main y, indices alone, is done to ease the combinatorial problem both at the level of the choice of
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the best index or indices, and at the level of the trial-and-error procedure to derive the the

corresponding terms. Interesting, the molecular connectivity terms can, sometimes, further be
combined with y indices to derive a mixed linear combination with improved modeling
capability, even if, normally molecular connectivity terms are dominant descriptor and do not
allow to derive any linear combination with improved modeling power. F ormally, the molecular

connectivity terms have the following form

Xitay,;
X (a’bﬂxhx':;{kall):—_'j" 1
! X +bx

Where a and b are optimization parameter, that can be positive, negative or zero. Indices y;, ¥;,
Xk and yx, are indices of the given molecular cohnectivity set. Further, each index can be elevated
to a positive, negative or zero power. Normally, the trial-and-error search'te_:chnique is quite
staightforWard and convergence is easily reached *: just start with an optimal index, add to it -
the next one, after optimization of this index, back-optimize the previous one, then construct the
fraction and act in the same way, and, finally, @ and & coefficients as well as powers are added
and optimized. A

Indices of set {y} are based on the degree §; and valence degree, ;" (for the valence
molecular connectivity indices), of each vertex i of a molecular graph and pseudograph
respectively, where for degree is meant the number of connections incident to that vertex.
Pseudographs allow for multiple connections and loops, that is, self-connections, that contribute
twice to 3;". For components of metal halides following definition, 8" = Z;"/ (Zi - Z;" — 1) has
been chosen °, where Z;" is the number of valence electrons and Z is the atomic ﬁumber of the
corresponding atom.

Aim of the modeling is to describe a set of properties by the aid of a linear or multi-linear
relationship, P = Z;m;X;, where X = y represents a special case, m ranges from 0 to n and forn=
0, we have, X, = X° =1. Values of m; constants are obtained with a linear least—squares.
procedure. Normally, with X terms we have i = 0,1, that is, a simple linear relationship. Negative
meaningless results for modeled properties can be avoided using ! ZmX; |, where bars stand for
absolute values, and use of such an algorithm normally improve the description. If, instead,
negative values are experimentally justified, es it is the case for SRp and SRy of amino acids,
then bars are omitted. Used statistics to check the validity of molecular connectivity indices or

terms are : the quality parameter, Q = r /s, the F ratio, F = fr¥/[(1-r*)v], where, t = correlation




coefficient, s = standard deviation of the estimate, f = degrees of freedom, v = number of ¥
or/and X paramcters, the utility, w = ‘ck/sk| of every descriptor, inclusive the unitary X' =1

term of the constant parameter, as well as the average utility <u>= Zu/m of the m descriptors.

DISCUSSION

The experimental data as well the molecular connectivity indices of the different classes
of compounds are collected in refs 1-5 as well as in refs. 7, and 8. |
Modeling the pH at the isoelectric point, pl, of amino acids

An appropriate and unusual term for this property of 21 amino acids which can be guessed
even before any trial-and-error procedure is started, is the term given by eq. 2 8 In fact,
considerations concerning the importance of the number of functional basic and/or acidic groups
in amino acids are critical for this kind of property. In this term, Ant = na-fip, where ny = n° of
acidic groups (2 for Asp and Glu, and 1 for all others), ng = n° of basic groups (2 for Lys and
His, 3 for Arg, and 1 for all others), and nr = 3, that is, the total number of functional groups ;

notice that for ny=2, An=0.

1Xp, = olv 1+ @)
o Z : }’ZT .

For x = Oy we obtain the following interesting modeling (where the rationale for notation

is:fory=D"— X;, =Px" fory="%", Xp = %", and so on).
(°X"} : Q=2.12, F=267, r=0.966, s=0.46,<u>= 2.4

Now, found term is rather trivial as it is nothing else than (1+An /ny), even if the following

combination of 4 terms with a better Q, r and s values is less trivial
°X", %X, °X", "X} : Q=2.53, F=95, r=0980, s=039,<u>= 7.9

But here, the good F value of the single descriptor together with its excellent, u = (16.3, 28.4),
utility vector are lost. In fact, the single utilities, with the exception of u(x?), this last
combination are rather ‘deceiving, with u = (3.1, 2.8, 4.7, 2.8, 26.3). Now, a decper trial-and-

error search reveals the existence of the following not at all trivial term
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with an interesting improvement in modeling power : Q =3.412, F = 693, r = 0.987, s = 0.29,
<u> =58, u = (26, 90), C = (77.99429, 5.75382). Not only the improvement in F and u is more
than expected, ibut, further, this term is a highly dominant term (or ‘dead-end’ term), as it doesn’t

allow any better combination with any other index or term.

Modeling the side-chain molecular volume, V, of L-amino acids

The description of this property for 18 amino acids offers some interesting clues
about use, form and ratings of connectivity terms. The best y and LCCI (linear combination
of y indices) are: {"x"}: Q=10.25,F = 691, r=0.989, s =4.0, <u>= 15, and {D, AR E
Q=043, F =688, 1=0.997, s =2.3, <u>=4.8. Now, the following term 'Xy = (D")**/ ",
found by a trial-and-error procedure 8 is a quite poor descriptor with, Q =0.031, F = 11,
and r = 0.632. But, together with %" shows the following surprising modeling and utility:
%, X} Q = 0.424, F = 989, r = 0.996, s = 2.4, <u>= 16, u = (34, 5.3, 7.4). We might
really wonder if somewhere there is not a better term apt to describe this property in a more
satisfactory way. A deeper search discovers the following term, which show: Q =0.438, F =

2109, r=0.996, s =2.3, <u>=32, and u = (46, 17)

’X, = @)

and whose correlation vector is : C = (18.1182, -52.5871). The statistical improvement of

this last term is quite impressive, and, clearly, it is a dominant ‘dead-end’ term.

Modeling the specific SR rotations of L-amino acids

An optimal term for the specific rotation SR, of =16 L-AA in aqueous solution, can be
found with a trial-and-error composition procedure applied to the optimal restricted set, {D, Oy,
%}, which rates 24 Q=0.088 F=412; r=0.955, s = 10.8, <u> = 7.2. Found term, Xgp,
shown in eq. 5, whena =7, rates : Q =0.04, F =30; r=0.830, s = 19.0, <u> = 5.6. This term




can be also be used, with Cy, = -Cp, to describe the specific rotations SRp, of the corresponding

D-AA, which differ from SRy in their sign.only.

0

Xsp(a)= Y . )

(D+ay,)

This quality of this term becomes evident when it is compared with the quality of the single
best {x.} index, which has, Q = 0.014, F = 3.2, r=043,s = 304, <u>= 2.1. Now, a
combinatorial search on the following set, {D, D", O %%, Y, ', % Xt> Xsr(1)}, where

X has here, a = 1, allows to find the following optimal combination
(% Xsr(1)} : Q=0.100, F =79.5,r=0.961,5=9.6, <u>=10.6

A search with Xsg(7) replacing Xsg(1) achieves a worse description, with "%, %o Xsr(N} |
Q=0.097, F=50,r=.962,5s=9.9, <u>= 8.1. Thus, chosen modeling vectors for SRy are:
X = ('3, Xsp, X°), CL=(26.28495, 965.8255, -545.67 ), u = (7.6, 12.3, 11.8), where in the

‘ iast vector we can notice the good utiii'ty of every term. . | '

The fact that the found family of molecular connqé'tivity terms is not able to derivea
gbod enough single descriptors oblige us to deepen the trial-an-error éearch arbund é_term
composed of 4 descriptors. The search ends up with the following dominant satisfactory
term, which being a dead-end term does not allow the construction of any improved

multilinear description

2y 2=

(6)

that shows the following statistics and C vector : Q = 0084, F=112,r=0943,s =112,
<> = 10.7, u = (10.6, 10.9), C =(573.114, -430.56).

The modeling of Crystal density, CD, of Amino Acids
The crystal densities, CD, of 10 amino acids cannot satisfactorily be modeled with any ¥

index, in fact, the single index description of this property is quite poor '




(°%}: Q=343,F=39,r=0.57,s=02,<u>=54

Now, a trial-and-error search for a better descriptor finds the following molecular connectivity

term, whose improved description, nevertheless, is rather deceiving

0_v

oD }:Q=586F=112,r=076,5=0.13,<u>=53 ()

{'Xe =

The following more convoluted term of eq. 8 enhances the description consistently but always in
an unsatisfactory way, with Q =7.91, F =20.4,r=0.848, s = 0.1, <u>= 5.4, u= (4.5, 6.4), the

‘correlation vector being, C = (-0.50967, 4.81717). Both terms are dominant ‘dead-end” terms.
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Modeling the solubility of aminq acia"s, purine& and pyritﬁidines and of [A4 + PP]

We will now model the solubility (g per Kg of H,O) of n = 20 amino acids, the solubility
of 23 purines and pyrimidines, ahd finally the solubiiity 6f a mixed class of 43 amino ac’ids
plus purines and pyrimidines. The modeling of the solubility of the two separate classes of
compounds, AA or PP, has already quite satisfactorily been achieved by the aid of
supramolecular reciprocal ° and supramolecular squared ' molecular connectivity terms,
respectively. Supramolecqlar connectivity indices are obtained muitiplying (%, and %, indices are
normally divided, as they are total reciprocal indices) the molecular connectivity indices by an
association parameter, a, to take into account supposed or detected association phenomena in
solution ''. To model the entire class of [AA+PPj compounds the introduction of the following

set of supraindices is mandatory ®

{aD-y.", aD%yy", %1, 2% xt a'ns A, xea L waly  9)

where a = 8 for Pro, 2 for Ser, Hyp, and Arg, and 1 for the remnant amino acids, while for PP we
have a =4 for 7PTp, 2 for 7Etb, ETp, and Cf, 1.5 for 7Itp and 1 for the remnant PP. To notice

that the formulation of the given set is slightly different from the one already given in a




préceding paper 8 The supraindices of this set , to avoid to burden the resulting equations, will

be renamed into
(°s, s', %, %", 's, 's", S, 8.} (10)

We will start looking for a term to model the 20 amino acids (no Cys, but with Hyp) using
the given supraindices as our final aim is to model the entire heterogeneous class of [AA+PP].
Dominant ‘dead-end’ term of eq. 11 can achieve a quite satisfactory modeling, with, Q = 0.020,

F=1007,r=0.991, s=493, <w>=21,u=(32,11)

(an

whose correlation vector is C = (4650.56, -162. 218).

The modeling of the 23 purines and pyrimidines, can also be achleved by the somewhat
different dommant ‘dead-end’ term of eq. 12, mth Q 0.282, F=4005,r=0.997,s=3.5, <u>=
33,u=(64,3.1),and C=(11. 6437 -1 53752) ‘

1Sv + (05)1..1 |

a2
(S, —0.002)"*

X5(PP)=

The only deceiving note in this modeling is the pobr utility of the unitary term of the correlation
vector. Notice that we are here modeling S in g per Kg of H,;0, while in our preceding modeling
of S(PP) solubility has been modeled g in 100 mi H,0 .

Well, let us now model the entire [AA + PP] class of compounds and let us start this
modeling with terms, Xs(AA) and Xs(PP). Their modeling power of the whole heterogeneous

class of compounds is

Xs(AA) : Q=0.020,F =1079,r=0.982,s= 50.0, <u>=24, u=(33, 15)
X¢(PP): Q=0.010,F =297, r=0937, s= 91.0, <u>=9.9,u=(17,2.6)




The term for the solubility of amino acids is quite good, and the term for the solubility of PP is
not at all deceiving. In fact the first term for amino acids is very similar, in form and modeling
power, to the following term, which has been found with a trial-and-error procedure over the

entire class [AA + PP]

D qvil.1 Doyl
CH"-C
V) .

X (44 + PP)=
(r, +10° - )

This term rates : Q = 0.021, F = 1199, r = 0.983, s = 47, <u> = 23, u = (35, 11), and the
correlation vector is : C = (7958.87, -100.596). This term is also a dominant term even if in

combination with index D it shows a somewhat improved Q statistics

{Xs(AA+PP), D} : Q=0.024, F =779, r = 0.987, s =42, <u>=17, u=(38, 3.6, 7.8)

Modeling the Lattice Enthalpy of Metal Halides
The optimal modeling of the lattice enthalpies of 20 metal halides by molecular
connectivity indices and bjr the reciprocal molecular connectivity indices, lR“ = ('« and

R = (1xv)'l'5, seems rather satisfactory, especially at the level of two-index linear

combination "®

%'y Q=0015, F=45, 1=0.846, s= 573, <uw>=172

(DY, %'} Q=0033, F=115, r=0965 $=290, <u>=194
{'R'}: Q=0019, F=72, r=0.895 s=481, <u>=298
(RY,MRY:  Q=0038, F=147, r=0972, s=259, <u>=242

Now, a trial-and-error procedure finds a term, shown in eq. 14, based on two tYpes of
~molecular connectivity indices, that shows the following statistics : Q = 0.037, F = 281, r=

0.969, s =24 .4, <u> =41, u = (17, 65), with correlation vector, C = (1911.76, 623.102)

(D) + 02

X
B DY 420y

(14)
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This dominant term allows for a somewhat improved description with I
(X, 7'} Q=0.041,F = 173,r=0.976,5s = 24.0, <u>= 15,u=(10.2,2.2, 32)

but the improvement in Q, does not suffice to overrule the worsening of F and u, thus, Xy

can also be considered a ‘dead-end’ term

Modeling the unfrozen water content UWC of amino acids and inorganic salls
The modeling of this property for 5 metal chlorides and 8 amino acids by normal ¥
“indices is quite deceiving 7 while the following trial-and-error term of eq. 15 b4 is quite
satisfactory, with Q =2.79, F=328,r= 0.984, s =0.35, <u>=12.8, and u = (18, 7.6)
1 | v -
X

XUWC = > " (15)
(D' ="2") |

A somewhat better modeling can be achieved if the absolute values of Xywc are
considered, that is, l quc |.In thi§ case we obtain the following interesting statistics, Q =
3.14, F =417, r = 0.987, s = 0.3, <u> = 12.8, u = (20, 5.0), with C = (1.83423, 0.55209). .
While Xywe allows for an enhanced Q/u-combination with 3" with following values, Q =
3.11,F =203, <u>= 9 . | Xuwe | term is a strict ‘dead-end” term allowing no enhanced Q

and u combinations.

Modeling the motor MON octane number of alkanes

A trial-and-error search for a molecular connectivity term with the {D, Oy, 'y} set of
alkanes, that do not have any valence molecular connectivity indices, discovers the term of
eq.16, with the following statistics : Q =0.085, F = 146, r = 0.916, s = 10.8, <u> = 195, u=
(12.1,27) ‘ “

0 0.1 13
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The correlation vector being, C = (-1.6714, 121.02) This term offers the possibility, through a

combinatorial search, to find a linear combination, with a consistently enhanced Q, r and s

statistics, but a worse F and u statistics
{Xnmon, D, %0 '3} Q=10.129, F=85,1r=0.965,5s=7.9, <u>=7.5,u=(4.8,5.6, 5.4,54,4.1)

CONCLUSION

Molecular connectivity terms whose general type has been described in the method
section seem to be the subtle thread that ties together the many different properties of different
classes of compounds. These terms, based on molecular connectivity indices are the last step in
the search of a formally common descriptor for different properties of different molecular
structures. Not only the similarity among the many different terms is striking, but the fact that
normally a single term is sufficient for a good description, make us confident that they represent
a powerful tool to derive and infer physicochemical information about molecules. The trial-and-
error procedure to derive molecular connectivity terms is easier than the combinatorial technique
used to detect the optimal set of best molecular cdnnectivity indices for a multilinear description
of a property. This procedure’is in some way similar to a forward selection combinatorial
technique, where only the next best index is chosen, to which a a back-optimization step has
been added. Further, this procedure allows to find more than one term that accomplishes its task
in an optimal way. For example, for UWC it is possible to find also tlhe following term,
[10.1('%)**+0.6'%") / (D" - %] |, which rates Q =3.12, F =410, r=0.987,s =0.3, <u>=12.8,
and u = (20, 5.3), and the modeling of the solubility of [AA + PP], that can be accomplished
with the same term used to describe the solubility of amino acids underlines the good
‘adaptability’ of these terms. And, as the search for terms belongs to the more general search for
new invariants, it is then not at all odd here to cite W. Ostwald, who was very aware about the
importance of invariants in science : ‘The significance of a law of nature ........ is the finding of
an invariant, that is to say, a quantity which remains unchanged even when all the other
determining elements vary within the possible limits imposed by thé law. Thus, we perceive that
the historical development of scientific concept is ever associated with the discovering and
working out of such invariants, in them we behold the milestones which mark the track traversed

by human knowledge.’
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Abstract

If a fullerene is defined as a finite trivalent graph made up solely of pentagons and
hexagons, embedding in only four surfaces is possible: the sphere, torus, Klein bottle
and projective (elliptic) plane. The usual spherical fullerenes have 12 pentagons, ellip-
tic fullerenes 6, and toroidal and Klein-bottle fullerenes none. Klein-bottle and elliptic
fullerenes are the antipodal quotients of centrosymmetric toroidal and spherical fullerenes,
respectively. Extensions to infinite systems (plane fullerenes, cylindrica.l fullerenes and
space fullerenes) are indicated. Eigenvalue spectra of all four classes of finite fullerenes
are reviewed. Leapfrog fullerenes have equal numbers of positive and negative eigenvalues,
with 0, 0, 2 or 4 eigenvalues zero for spherical, elliptic, Klein-bottle and toroidal cases,

respectively.

Introduction

The discovery of the fullerene molecules and related forms of carbon such as nan-
otubes has generated an explosion of activity in chemistry, physics and materials science,
which is amply documented elsewhere [1-4]. In bchemistry, the ‘classical’ definition is that a
fullerene is an all-carbon molecule in which the atoms are arranged on a pseudo-spherical
framework made up entirely of pentagons and hexagons, which therefore necessarily in-
cludes exactly 12 pentagonal rings. ‘Non-classical’ extensions to include rings of other sizes
have been considered (e.g. ref. [5]) and may be competitive in energy with the classical
fullerenes in some ranges of nuclearity (e.g. ref. [6]). The present paper is concerned with
a generalisation in a different direction: what fullerenes are possible if a fullerene is a finite
trivalent map with only 5- and 6-gonal faces embedded in any surface (i.e. a 2-manifold
in the mathematical sense)? This seemingly much larger concept leads to a small number

of well defined extensions to the class of spherical fullerenes, actually three in number. Of




these only the toroidal fullerenes are likely to have direct experimental relevance (indeed
observation of a toroidal ‘fullerene crop circle’ has already been reported [7]) but all three
extensions are useful in placing physical fullerenes in a wider mathematical context and
are considered in this light here. A more mathematical treatment of the concept of the
extended fullerenes and their further generalisation to higher dimensional spaces is given
elsewhere [8].

Classification of finite fullerenes

Define a fullerene in the wider sense as a finite, trivalent map on a surface and
consisting of only 5-gonal and 6-gonal faces. Each such object has n vertices, e edges and
[ faces of which fs are pentagons and fs hexagons. Infinite analogues of fullerenes will be
considered in a later section. ‘ '

The Euler characteristic x is defined as the number

XxX=n—e+f ‘ (1)

_which for a trivalent graph (hence having 2e = 3n) made up of pentagons and hexagons
(and hence 2e = 5f5 + 6f5) is

X = f5/6. (2

For a surface in which a fullerene in this éxtended sense can be embedded, the number y is
therefore a non-negative integer. In the well known classification of compact 2-manifolds,
any such manifold is homeomorphic to a sphere with g handles (if orientable) or to a sphere
with g cross-caps (if non-orientable)*. Hence, the Euler characteristic x for a closed surface

(i.e. a surface without a boundary) is also given by

X=2(1-g) (for an orientable surface)

(3)

= 2-g (for a non-orientable surface).

The cases compatible with non-negative integral solutions for X are thus exactly four in
number. The only surfaces admitting finite fullerene maps in the sense of our definition are
therefore: S? (the sphere, orientable with g = 0), T (the torus, orientable with g = 1), K?
(the Klein bottle, non-orientable with g = 2) and P? (the real projéctive plane, also called
the elliptic plane, non-orientable with g = 1). All embeddings are 2-cell, meaning that each
face is homeomorphic to an open disk. An immediate consequence of Euler's formula is

that fullerenes on S?, T2, K2 and P? have exactly 12, 0, 0 and 6 pentagons, respectively.

* Handles are made from cylinders and cross-caps from twisted eylinders (see ref. [9]
for details). '

(O]




The fqur possible classes of fullerenes are therefore spherical, toroidal, Klein-bottle and
elliptic. No other surfaces are compatible with the definition. Toroidal and Klein-bottle
fullerenes may also be called toroidal and Klein-bottle polyhezes [10,11] as they include no

pentagons.

Maps on S? can be drawn as the usual Schlegel diagrams, and maps on T2, K2
and P? by identifying opposite edges of a fundamental parallelogram with appropriate
orientation. Maps on P? are more usually drawn inside a circular frame where antipodal
boundary points are to be identified. Fig. 1 shows examples of small fullerenes from the
four classes, drawn as the graph, the map and its dual triangulation in the appropriate
surface. We remark that the Petersen and Heawood graphs which appear naturally here
are actually the 5- and 6-cages (a k-cage is a trivalent graph of smallest cycle size k with
the largest possible number of edges); their duals in P? and T?, K¢ and K7, realise the

chromatic number of the corresponding surfaces.

Spherical and toroidal fullerenes have an extensive chemical literature, and Klein-
bottle polyhexes have been considered in several papers [11-13]. The review chapter by
Klein and Zhu [13] in particular, introduces many of the relevant concepts from surface
topology to a chemical context. Elliptic fullerenes have appeared so far only in ref. (8],
but turn out to be related in a simple way to a subclass of the known spherical fullerenes,

as shown later.
Spherical fullerenes

It has been proved that at least one spherical fullerene with n vertices (modelling a
carbon molecule C,,) exists for all even n with n > 20 except for the case n = 22 [14].
Each fullerene polyhedron has fs = 12 pentagons and fs = n/2 — 10 hexagons. Chemical
interest centres on isolated-pentagon fullerenes, which can be constructed for n = 60 and
for all even values of n > 70 (thus with fg = 20 and fs > 25). Aspects of the systematics

of spherical fullerenes including chemical results are summarised in, e.g. ref. [2].
Toroidal and Klein-bottle fullerenes

T2- and K2-polyhexes are related to the hexagonal tessellation of the graphite sheet
in a straightforward way. The underlying surfaces are quotients of the Euclidean plane
R? under groups of isometries generated by two translations (for T2) or one translation
and one glide reflection (for K2). Each point of 72 and K2 corresponds to an orbit of
the generating group. For completeness, we note that the groups generated by a single
translation or a single glide reflection respectively give as quotients the cylinder and the

twisted cylind'er (the Mobius surface). Construction and enumeration of polyhexes can
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therefore be envisaged as a process of cutting parallelograms out of the graphite plane and
gluing their edges according to the rules implied in Fig. 1.

Some confusion exists in the mathematical and chemical literature of toroidal poly-
hexes. Negami [15], Altschuler [16] and other topological graph theorists define regular
3-valent maps on the torus to mean 2-cell embeddings with all faces hexagonal, without
further qualification. Errera [17], Brahana (18], Coxeter [19] and others working in a group
theoretical tradition use the same term in a more restricted sense of polyhexes with au-
tomorphism groups G of the maximal possible order |Aut(G)|, in other words, those that
realise the equality in the analogue of the Weinberg bound |Aut(G)| < 4e(G) (= 6f5 for
a polyhex). These regular maps are called fully symmetric by Nakamoto in his thesis
[20]. All such fully symmetric graph embeddings are: (on S52) the five Platonic polyhedra,
(on P?) six graphs that include the Petersen graph and its dual, (on K?2) no graphs at
all [20], and (on T?) the polyhexes that arise from an analogue of the Goldberg/Coxeter
construction of icosahedral S2-fullerene polyhedra, [21,22].

Here we consider only polyhedral polyhexes, i.e. those without loops or multiple edges
and where the intersection of any two faces is either one edge or is empty. The dual of a
toroidal polyhedral polyhex is a triangulation of the torus. To illustrate the relationship of
the various definitions, we give the counts for small cases in Table 1, using data extracted
from the papers of Negami [15] and Altschuler [16]. The tabulations given by Kirby [10,12]
include some non-polyhedral cases.

In Negami’s construction, a three-parameter code [15] represents any toroidal polyhex
(or, equivalently, any 6-regular triangulation of T?) as a tessellation of the hexagonal
lattice. Each graph of this type is denoted T'(p, g, ), with integer parameters p,qand r
where p is the length of a geodesic cycle of edge-sharing hexagons, r is the number of such

cycles and g is an offset.

Polyhex maps on T2 are constructible for all values fg > 3, n > 6 [23]. At least
one polyhedral toroidal polyhex exists for all even numbers of vertices n > 14. The unique
polyhedral toroidal fullerene at n = 14 is a realisation of the Heawood graph. It has indices
(2,1) in the Goldberg/Coxeter construction and is the dual of K7, the complete graph on
seven vertices, which itself realises the 7-colour map on the torus. This map and its dual
are shown in Fig. 1. A different presentation of this and the next three toroidal polyhexes

obtainable by the Goldberg/Coxeter construction are illustrated in Fig. 2.

A description of Klein-bottle polyhexes can be developed along similar lines [20,24].
Each toroidal graph T'(p,0,7) can be used to obtain two Klein-bottle 6-regular triangula-




tions (and hence, by dualisation, fullerenes), the handle and cross-cap types Kn(p,r) and
K.(p,r), respectively. The torus is cut along a geodesic of length p. Then the handle
construction amounts to identification of opposite sides of the resulting parallelogram with
reversed direction. In the cross-cap construction, the opposite sides are each converted to
cross caps, with slightly different rules for odd and even p. See also ref. {25] for pictures
of the two types of Klein bottle. Polyhex maps on K? are constructible for all values
fe =3, n > 6 [23]. The unique smallest polyhedral Klein-bottle polyhex has 18 vertices (9
hexagonal faces) and is the dual of the tripartite K33 3; the graph, the map and its dual

are shown in Fig. 1.

It will turn out to be useful for calculation of spectra later that each Klein-bottle
polyhex graph, whether of handle or cross-cap type, has a double cover among the cen-
trosymmetric toroidal polyhexes. In contrast with a T2-polyhex, a polyhex on K? may or
may not be bipartite, i.e. spanned by two disjoint sets of vertices, black and white, such

that every white vertex is surrounded by black and vice versa.
Elliptic fullerenes

Torus and Klein-bottle arise as quotient spaces, as described above, and this leads
to a comstruction of the possible polyhex maps. Within the same framework the real
projective ‘plé;n;a;‘-a;ﬁseé as a quotient space of the sphere, the required group being C;. The
real projective plane (also known as the elliptic plane) is obtained by identifying antipodal
points of the spherical surface; in other words, it is the antipodal quotient of the sphere. P2
is the simplest compact non-orientable surface in the sense that it can be obtained from

the sphere by adding just one cross-cap.

Clearly, this construction can be carried over to maps: the antipodal quotient of a
centrosymmetric map on the sphere has vertices, edges and faces obtained by identifying
antipodal vertices, edges and faces, thereby halving the number of each type of structural
component. For example, the antipodal quotient of the icosahedron is Kjg, the complete
graph on 6 vertices, and that of the dodecahedroh is the Petersen graph, famous as a
counterexample to many theorems. The Petersen graph is not planar but it is called
projective-planar in the sense that it can be embedded without edge crossings in the real

projective plane.

In this terminology, our definition of elliptic fullerenes amounts to selection of poly-
hedral projective-planar trivalent maps with only 5- and 6-gonal faces. As noted above,
fs = 6 for these maps. Thus, the Petersen graph is an elliptic fullerene (the smallest).
Maps on P? with fs = 6 are constructible for fs = 0 and for all values fs > 3 [23]. Not




all of these are polyhedral. In general the elliptic fullerenes are exactly the antipodal quo-
tients of the centrosymmetric spherical fullerenes. From any centrosymmetric fullerene it is
possible to construct a unique elliptic fullerene by identifying antipodal vertices, and from
any elliptic fullerene it is possible to reconstruct uniquely the original centrosymmetric
fullerene.

Thus, the problem of enumeration and construction of elliptic fullerenes reduces
simply to that for centrosymmetric conventional spherical fullerenes. The point symmetfy
groups that contain the inversion operation are Cj, Cna, (n even), Dny (n even), Dpq (n
odd), Th, Op and I. A spherical fullerene may belong to one of 28 point groups [2] of
which 8 appear in the previous list: C;, Cap, Dan, Dgn, Dsa, Dsgq, T, and Ip. Clearly,
- a fullerene C,, can be centrosymmetric only if n is divisible by 4 as f; must be even
but also fg = n/2 — 10. After the minimal case n = 20, it turns out that there are no
centrosymmetric fullerenes at n = 24 and n = 28, and unique examples at 32 (Ds4) and 36
(Der). Complete enumerations of general centrosymmetric fullerenes on up to 100 atoms
and of isolated pentagon centrosymmetric fullerenes of up to 140 atoms taken from the

Fullerene Atlas [2] are given in Tables 2 and 3. All generate elliptic fullerenes by antipodal
identification.

It seems likely that at least one centrosymmetric fullerene exists for all doubly even
values of n > 32 and at least one centrosymmetric fullerene with isolated pentagons for
every doubly even n > 92, though we are not aware of a proof. For four of the eight point
groups, explicit conditions are known for the existence of a fullerene of the given symmetry
at a given n: Iy fullerenes C,, exist for all distinct solutions (4, j) of n = 20(32 + ij + j2)
with either ¢ = j or j = 0, and similar but more complicated conditions are known for T},
Ds4 and Degy, fullerenes [26].

Some infinite analogues of fullerenes

All the fullerenes considered so far are finite and are actually trivalent tilings with
(combinatorial) pentagons and hexagons of particular surfaces. If instead of S2, T2, K2 or
P2, we consider tilings of the Euclidean plane R?, a natural definition is obtained for an
infinite fullerene analogue. Namely, a plane fullerene is a trivalent tiling of R? by combina-
torial pentagons and hexagons. Deza and Shtogrin [8] proved that the number of pentagons
in a planar fullerene is at least 6. This follows from an old result of A.D. Alexandrov [27].
It is easy to see that the plane fullerenes with f5 = 0 (the graphite sheet), and fs = 1 (a
pentagonal cone) are unique. However, there is an infinity of possibilities for 2 < fs < 6.

Restriction to bounded tile size eliminates pathological possibilities such as an infinite tube




capped by a hemi-dodecahedron. The restriction to trivalence is also a powerful one: by
allowing also four-valent vertices, for example, R? could be partitioned into pentagons in
a tiling with vertices of degrees three and four (Fig. 3) which would not be a fullerene in

our sense.

Other infinite fullerenes would be given by trivalent tilihgs with pentagons and
hexagons of the cylinder, semi-infinite cylinder, twisted cylinder etc. Such a tiling on

the cylinder is a polyhex and is the infinite open nanotube.

The tiling description also leads naturally to definition of a space fullerene as a four-
valent tiling of R® where each cell is a conventional fullerene polyhedron. It turns out that
those space fullerenes where the cells have no adjacent hezagons [Cag, Ca4, Ca6, C28(Ty)] are
of special interest, though others have been constructed [8]. These space fullerenes occur in
chemistry and physics as the ‘dodecahedral family of hydrates’ [28] (clathrates) and their
duals as ‘tetrahedrally close-packed phases’ (t.c.p) or generalised Frank-Kasper phases [29-
31]. If the inventory of cells is extended to the Cao ‘near fullerene’ (the edge-truncated
dodecahedron with 1 square, 10 pentagonal and two hexagonal faces), other phases can
be represented, e.g. Hume-Rothery’s phase v has Cag : Ca2: Cg6 in the proportion 2:2: 3
[31].

In the hydrate structures the ‘vertices’ are water molecules with two donor and two
acceptor hydrogen bonds. Each space fullerene gives rise to a hypothetical silicate structure
if every vertex is replaced by an SiO, tetrahedron, or a hypothetical carbon allotrope if
every vertex is replaced by a single carbon atom. Combinations tabulated by Wells [28] can
be represented in an obvious ‘chemical’ fullerene notation as (Cz20)(Ca4)s, (C20)2(Ta Cas),
(C20)3(C24)2(C26)2 and (Ca0)5(C24)8(Cag)2. The first of these is illustrated in Fig. 4. A
new structure consisting of Cag-, Ca4- and C3¢(Den)- cells is given by Deza and Shtogrin [8].
Four-valent honeycombs with fullerene and similar cells also figure in modern conjectured
solutions to the Kelvin problem of finding a partition of three-dimensional space into cells
of equal volume and minimal surface area (see also other papers in the volume containing
refs. [30] and [32]). The best foam found so far [32] is the dual of the A15 Frank-Kasper

structure and is a metric variation of (Ca0)(Ca4)s.

Generalising further, the vertices could be replaced by larger entities such as tetra-
hedral Cag fullerenes bonded through their four apical atoms to make a super-fullerene
lattice. The 3D tilings open up a number of questions of enumeration, characterisation

and spectral structure, to answer which will require further work.

We note that plane fullerenes can be seen as infinite fullerene polyhedra, and space




fullerenes as an infinite analogue of a four-dimensional fullerene. A four-dimensional
fullerene (a polytopal 4-fullerene in the language of [8]) is therefore a simple 4-polytope

having only five- and six-sided two-faces. Clearly, all cells of such structures are fullerenes.
Eigenvalue properties

A first indication of the qualitative m-electronic structure to be expected of the new
frameworks as hypothetical forms of carbon can be gained from Hiickel theory, for which
a pre-requisite is a knowledge of the adjacency properties. For orientable surfaces there is
a clear link between the spectrum of the adjacency matrix of the map and the w-orbital
energies of its realisation as a carbon framework. In the simplest Hiickel model, each eigen-
value A of the matrix corresponds to an orbital of energy a + A3, where « is the Coulomb
parameter, assumed the same for every site, and ﬁ the resonance parameter, assumed
equal for all bonds. For non-orientable surfaces such as K 2 and P? this correspondence
is lost because the intrinsic twist in the surface introduces a phase discontinuity in the
m-basis. The relevant eigenvalues are then those of a weighted adjacency matrix, as will
be discussed below.

It should be remembered that 7 energy is only one contribution to the total energy,
and in real spherical fullerenes it is dominated by the strain in the o system, which leads
for example to the observation that stable fullerenes are not necessarily those of maximal
Hiickel energy {2]. As real carbon systems, T2-fullerenes are highly strained and are unlikely
to be realised unless for very large values of n; the toroidal nanotube reported by Liu et al.
(7] has a diameter of 330 — 500 nm, implying many thousands of atoms. Chemical systems
based on K2- and P2-polyhexes are less plausible, as these systems involve self-intersection.
Klein [11] suggests a mode of interlocking of graphitic planes that may minimise the very
considerable energetic costs, but the interest of these systems is likely to remain purely

mathematical for a long while to come.
(a) Orientable fullerenes

S?%-_fullerenes. The situation for the usual spherical fullerenes has been well explored.
Adjacency matrices of spherical fullerenes have typically more positive than negative eigen-
values, correlating with their chemical behaviour as electron-deficient mw-systems. Only oc-
casional examples with more negative than positive eigenvalues are known [33]. A special
subclass with equal numbers of positive and negative eigenvalues, and therefore an ‘ideal’
m-structure, is formed by the leapfrog fullerenes C,,, each constructed by omnicapping and
then dualising a smaller S2-fullerene C,, /3 [34]. Other spherical fullerenes with exactly n/2

positive eigenvalues are possible, but are rare compared to the leapfrogs [2].




Leapfrogging can be carried out on any surface, with characteristic implications for
the eigenvalue spectrum. As an illustration of the leapfrog construction on non-spherical
surfaces, the leapfrogs of the smallest spherical, toroidal, Klein-bottle and elliptic fullerenes
are given in Fig. 5. The striking spectral regularities from the leapfrog transformation can
be rationalised in terms of the way that relationships between structural components in a
parent carry over to the leapfrog map. Each face of the parent gives rise to a congruent
but rotated face in the leapfrog; these Clar faces are disjoint and exhaust the vertices of
the leapfrog. All faces of the leapfrog outside the Clar set are hexagons centred on the
sites of the parent vertices. Each edge of the parent gives rise to a rotated edge in the
leapfrog; these Fries edges are again disjoint, and account for one third of the edges of the
leapfrog and all of its vertices. The Fries edges radiate from the Clar faces, so that every
edge of the leapfrog is either Fries or Clar (i.e. an edge of a Clar face).

A consistent Kekulé structure can be built for leapfrog fullerenes on any of the four
surfaces by placing formal double bonds on the Fries edges and formal single bonds on
the Clar edges. This Fries structure has the maximum possible number of simultaneous
benzenoid hexagons, one for each vertex of the parent, giving an ideal localised electronic
structure for the neutral carbon cage C,. A delocalised version of the argument uses
considerations based on the Rayleigh inequality for the distinct basis sets consisting of
all bonding (in-phase) or all anti-bonding (out-of-phase) combinations along Fries edges
[35] and shows that S2-leapfrog fullerenes have no zeros and hence closed shells as neutral

molecules.

A second localised structure places a sextet of m electrons on every Clar face and
a single bond on every Fries edge; this is a formal model of the electronic structure of
the anionic system C;5~ bearing an excess of fs electrons. This too has its counterpart
in delocalised molecular-orbital theory, where the extra 12 electrons of a leapfrog S2-
fullerene anion C12~ occupy low-lying anti-bonding orbitals of translational and rotational

symmetry [36].

T2-fullerenes. Eigenvalue spectra of toroidal polyhexes have been studied in some
detail. Kirby et al. [10] give an explicit formula for calculation of the set of eigenvalues in
terms of canonical lattice-vector parameters. T2-polyhexes have symmetric spectra (with
both +A and —\ occurring for every eigenvalue A), as they are bipartite graphs, and all
eigenvalues \ except +3 and +1 have even multiplicity. The special eigenvalue A = 0
is governed by a simple pattern: exactly those toroidal polyhedral polyhexes that are
leapfrogs have open-shells, with four zero eigenvalues at positions n/2 — 1, n/2, n/2 +1

and n/2 + 2 in the spectrum [37]. The spectra of toroidal polyhexes are also intimately
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related to those of spherical triangle and hexagon polyhedra, and explaih endospectral

regularities in the latter series [38].
(b) Non-orientable fullerenes

As warned earlier, there is a subtlety in the application of Hiickel theory to frame-
works embedded in non-orientable surfaces. The problem arises as follows. The w-basis
consists of a p function on every participating carbon atom, directed along the normal to
the surface, and Hiickel energies are obtained by diagonalising a Hamiltonian matrix whose
entries are pairwise integrals of these (vector-like) functions. Under the usual assumptions,
only functions on nearest neighbours are involved. For an orientable surface, neglecting
curvature, neighbouring normals are parallel and the integrals are therefore proportional
to entries in the adjacency matrix. However, for a non-orientable surface made by gluing
edges of a patch together with a twist, p functions neighbouring across the join become
antiparallel and for such pairs the integral is reversed in sign (see Fig. 6).

A standard chemical example occurs in the theory of Mébius transition states for
pericyclic processes where eigenvalues for cycles with one phase interuption are found by
diagonalising a weighted adjacency matrix that has an entry —1 for one link and +1 for all
others. The spectrum of the Mdbius cycle can be found by rotation of the usual geometric
construction for untwisted cycles [39]. In the present case, an analogous procedure can be
adopted: to construct the dimensionless Hiickel Hamiltonian matrix, H, take the adjacency
matrix A of the graph and multiply by —1 all entries for edges that cross a twisted boundary
(in the case of K?), or cross the circular boundary (in the case of P2). Signs for any edges
terminating at or lying within a boundary can be decided by making small shifts to bring
their vertices inside the boundary. '

K?2-fullerenes. Some calculations of eigenvalues of unweighted adjacency matrices
of Klein-bottle polyhexes have been reported [40] and compared with those of toroidal

polyhexes, but a general picture of the spectra for these systems has not been given.

The Klein-bottle surface can be obtained by identifying diametrically opposite points
of the torus, i.e. by collapsing each point and its antipode [41]. The point groups available
to the covering torus are at most the centrosymmetric subgroups of Deop, i.e. Dnp and Cpp,
(n even), Dpg and Sap, (n odd), C;, though, as with spherical fullerenes, some of the lower
groups may not be realisable. Hence, each K2-polyhex on n vertices is doubly covered by
a centrosymmetric T2-polyhex on 2n vertices, and is therefore a divisor [42] of the larger
graph. By a centrosymmetric graph, we mean, as usual, a graph that has a centrosymmetric

setting on the appropriate surface, i.e. has centrosymmetric maximal symmetry. The
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weighted K2-polyhex represented by the H matrix is the co-divisor. Any giveri veigenvector
of the adjacency matrix of the la,rgér T2-polyhex therefore corresponds to an eigenva,lué
in the spectrum of A (H) of the smaller K2-graph if the antipodal vertices carry equal
(opposite) coefficients. Eigenvectors of the covering graph can always be projected to
display this gerade/ungerade symmetry. Fig. 7 shows the construction of double covers
for two small Klein-bottle polyhexes. Given a K2-polyhex, the double cover can always be
constructed, reduced to canonical form and its spectrum partitioned into that of A (K?)
and H (K?).

A simple pattern can be observed in the partitioned spectra. Consider a given eigen-
vector |\ > with eigenvalue ) in the toroidal double cover. As the covering T2-polyhex is
bipartite, a change of sign of the coefficient on every vertex of one partite set generates
an eigenvector | — A > of eigenvalue —A. On collapsing pairs of covering vertices, | + A >
will generate an eigenvector of either A or H, as will | — A >. Two different situations are

possible:

(i) the K2-polyhez itself is bipartite: |+ > and |-\ > yield eigenvectors with eigenvalues
belonging to one and the same subspectrum, either the spectrum of A or the spectrum
of H. For example, in this case, the A spectrum always contains A = 3 and A = -3,

whereas the H spectrum contains neither.

(ii) the K2%-polyhez itself is non-bipartite: |+ A > and | — A > yield eigenvectors with
eigenvalues belonging to different subspectra, one to the spectrum of A and one to
that of H. As a consequence, the two subspectra are exact reversals of one another.

In particular, the A spectrum always contains A = +3 and the H spectrum A = —3.

The origin of the properties (i) and (ii) is readily explained. Take the patch of
hexagons that generates the K2-polyhex, and colour its vertices alternately black and
white. Further, take an eigenvector |A > of the covering torus that yields a vector of the
same eigenvalue for A. |A > will have the property that any one pair of antipodal vertices
on the torus share a coefficient. Now attach to each vertex of the patch the common
value of the coefficient from its covering pair, to produce a self-consistent eigenvector of A,
IA(A) >. If the K2-polyhex is bipartite (case (i)), reversal of the coefficients of all black
vertices of the patch gives another self-consistent eigenvector of A, | — A(A) >. However,
if the K2-polyhex is non-bipartite (case (ii)), then when the patch is joined up to make the
Klein bottle each edge of the graph that crosses the twisted boundary will join vertices of
like colour, since it is these edges that destroy the alternating pattern of the planar patch.

In such a case, weighting these edges by —1 and simultaneously reversing all coefficients
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on the vertices of one colour gives an eigenvector of H with eigenvalue —J, i.e. |- A(H) >.

QED.

A leapfrog rule can be derived for K2-polyhexes. Consider a patch cut from the
hexagonal tessellation of the plane, such that it can be rolled up to give both leapfrog 7°2-
and K?-polyhexes. This possibility implies that the vertices of the patch are spanned by
Clar hexagons. Fig. 8 shows such a patch. When wrapped as a torus, the polyhex must
have four zero-eigenvalue vectors, as it is a leapfrog. Fig. 8 (c¢)—(f) shows their explicit
form. In terms of the Fries edges, both bonding and anti-bonding spaces each contribute
two adjacency eigenvectors of zero eigenvalue. Inspection of the figure shows that different
subsets of exactly two of the four survive as eigenvectors of either A or H matrices when
the same polyhex is glued as a K2-fullerene. The Rayleigh inequality arguments used in
ref. [35,43] show that, as bonding and anti-bonding spaces each contribute one zero in the
Klein-bottle form, the two zeroes are eigenvalues n/2 and n/2+1, i.e. HOMO and LUMO
of the hypothetical neutral carbon framework with this topology. The general chemical
conclusion is that all leapfrog K2-polyhezes, whether treated ds weighted or unweighted

Hiickel problems, have open shells, with two electrons in two non-bonding w orbitals.

A final feature of the leapfrog transformation is illustrated by Fig. 9, where the
graphs of the 18-vertex K?2-fullerene, its leapfrog and double leapfrog are superimposed.
Leapfrogging switches the character of the graph from bipartite to non-bipartite and back
again. This is a result of a switch in parity of geodesic cycles, even though all faces remain
hexagonal, and is part of a more general pattern: leapfrogging a cubic graph with all faces
even switches the bipartite character on the non-orientable surfaces (K2 and P?) but leaves
it unchanged on the orientable surfaces (S? and T?).

P2-fullerenes. The eigenvalue spectra, both weighted and unweighted, of an elliptic
fullerene are immediately available from the adjacency spectrum of its centrosymmetric
parent. The eigenvalues of A for a P2-fullerene are just those of the parent that correspond
to gerade eigenvectors; eigenvalues of H correspond to ungerade eigenvectors of the parent.
Together, the weighted and unweighted spectra of the P2-fullerene sum.to the spectrum
of the parent, since the smaller graph is a divisor of the larger.

A simple consequence is that any P2-fullerene derived from leapfrog spherical parent
has a properly closed shell as a neutral 7 system. Proof: the leapfrog parent C,, has n/2
positive and n/2 negative eigenvalues [35]. Its bonding eigenvectors span the permutation
representation of the Fries edges [34,36]. This representation has character zero under

inversion as all edges shift under this operation. Hence, the centrosymmetric leapfrog S2-
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fullerene C,, has n/4 gerade and n/4 ungerade bonding eigenvectors. Therefore, the spectra
of A and H of the derived P2-fullerene will each have n/4 bonding, n/4 anti-bonding
and zero non-bonding eigenvectors, QED. As the operation that derives P2- from S2-
fullerenes commutes with the leapfrog transformation, this argument proves that leapfrog

P?_fullerenes have properly closed shells.
Conclusion

This paper has explored the extension of the fullerene concept from the sphere to
other surfaces, retaining trivalence and the limitation to face sizes five and six, showing that
the chemical species exist within a mathematical context of a limited set of possibilities
for tiling. Consideration of the extended set of surfaces also gives a context to the magic-
number rules of Hiiekel theory, such as the leapfrog rule for closed-shell S2-fullerenes, as
it turns out that leapfrog polyhedra have distinct but predictable properties on all four
surfaces. Extensions to other face sizes and more exotic surfaces will allow description of
many more variants on the sphere, some of which are promising as candidates for carbon

polyhedra or infinite solids.
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Table 1: Enumeration of toroidal polyhexes. fg is the number of hexagonal faces. The
count of regular polyhexes is for 2-cell embeddings of trivalent maps with all faces hexag-
onal. Polyhedral polyhexes are those with dual triangulations in which the intersection of

any two faces is either a vertex or is empty. The final rows give the counts and canonical

lattice-vector parameters for the restricted class of regular polyhexes of maximal automor-

phism group.

fs 1 2 3 4 5 6 7T 8 9 10 11 12 13 14
Regular 1 1 2 3 2 3 3 5 4 4 3 8 5

Polyhedral - - - - - - 1 1 2 1 1 4 2

Fully symmetric 1 - 1 1 - - 1 - 1 - - 1 -

(1,0) (2,2)(3,1)
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Table 2: Centrosymmetric fullerenes C, (20 < n < 100) with and without pentagon

adjacencies. Each is the parent of an elliptic P2-fullerene.

Con Don Dgn D3y Dsq - Th I, Total

Ci

20
24
28
32

36
40

44

48

52

56
60
64
68
72

12
15
13
26
22

11

76
80

16

84
88
92
96

31

16
13
16
28
130

10
12
20
14
78

35

42

46
279

100

Total

18

35

18




) with isolated pentagons. Each

60 < n <140

Table 3: Centrosymmetric fullerenes C,, (

is the parent of an elliptic P2-fullerene.

Con Do Dgn Dsg Dsg Th I, Total

C;

60
72

76
80
84
88
92

96
100

104
108
112
116
120
124
128
132

12

18
19
16
107

10
12

136
140
Total

11

16

50

17

19




Captions to Figures

Figure 1: Smallest spherical, foroidal, Klein-bottle and elliptic fullerenes. The first col-
umn lists the graphs drawn in the plane, the second the map in the appropriate surface
and the third the dual in the same surface. The examples are (a) the dodecahedron (dual
= icosahedron), (b) the Heawood graph (dual = K7), (c) a small Klein-bottle polyhex
(dual = K333) and (d) the Petersen graph (dual = Kg). '

Figure 2: Examples of small polyhedral toroidal polyhexes presented as benzenoids
with glued vertices (indicated on the periphery). These are the polyhexes with Cox-
eter/Goldberg codes (2,1), (3,0), (2,2), (3,1). The map (2,1) is the Heawood graph,
which is drawn in two different presentations in Fig. 1.

Figure 3: A tiling of the plane with combinatorial pentagons alone in which all vertices

are of degree 3 or 4.

Figure 4: The smallest space fullerene: an assembly of 20- and 24-vertex spherical
fullerenes in ratio 2 : 6 (see Wells [28]). Different metric variations of this structure appear

as a clathrate, and as the best Kelvin foam. Its dual is A15, the structure of ,B-timgsten
and Cr;Si.

Figure 5: Leapfrogs of the the smallest polyhedral fullerenes on the surfaces S2, T2, K2
and P2,

Figure 6: Construction of a non-orientable surface such as a Mébius strip by twisting and

gluing a planar system brings together p orbitals of opposite phase across the seam of the
twist.

Figure 7: Construction of toroidal double covers of Klein-bottle polyhexes: (a) shows a
bipartite K2-polyhex on 18 vertices which is covered by a centrosymmetric D3y torus on
36 vertices; (b) shows a non-bipartite K2-polyhex on 24 vertices, covered by a 48-vertex,
centrosymmetric Dgp, torus. The steps in the construction are: (i) copy the Klein-bottle
polyhex by a simple translation; (ii) flip the second copy by 180° about the translation
vector; I(iii) fuse the two copies. The arrows indicate edge identifications, and members of
a pair of covering vertices are marked with the same symbol (filled circle or square). Note
that in case (a), the two covering vertices are to be found in the same partite set on the

torus, whereas in case (b) they are not.

Figure 8: Origin of zero eigenvalues in toroidal and Klein-bottle leapfrog polyhexes. An
18-vertex polyhex is shown in (a), numbered as for connection either as a T2-fullerene or

on K? with the twist occurring on gluing left and right edges of the parallelogram. This

20




polyhex is a leapfrog, as shown in (b) where shading identifies Clar faces and a double
bond a Fries edge. Edges crossing the seam of the twist and therefore to be weighted by
—1 in the Hiickel problem on K? are in bold. When the polyhex is connected on T2 all four
vectors (c) to (f) represent eigenvectors of A with zero eigenvalue. When it is connected on
K2, (c) and (e) are zero-eigenvalue eigenvectors for A and (d) and (f) are zero-eigenvalue
eigenvectors for H, the weighted adjacency matrix. Details of the construction of (c) to

(f) from local bonds and anti-bonds on Fries edges are given in ref. [43].

Figure 9: Multiple leapfrogs of a K2-polyhex. The parent 18-vertex graph (thick lines)
is leapfrogged to 54 and then to 162 vertices (thin lines). Only the first and third graphs
are bipartite: when the patch is glued as indicated by the arrows black vertices give a
consistent partite set (filled circles) in the parent and double leapfrog but not in the single

leapfrog
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1. INTRODUCTION

Molecular Dynamics (MD) has been applied to biomolecular systems and has
shown to be able of elucidating on their energetic, dynamical and statistical mechanical
properties. MD is a deterministic procedure in wh'ich the atoms in a molecule move
according to classical mechanics. Thus, in a MD calculation we have to integrate
Newton’s equations of motion over time for the N atoms of the molecular system which

is being studied
2r(i,t)/0t2= m(i)-1FGi,t) i=1,..N (1)

with F@G,H) = -oV(r(1,),...r(N,t))/or(i,t) as the force on atom i at time t,
V(r(L,1),....,r(N,1)) as the potential energy function, r(i,t) as the position of atom i at time
t and m(i) as the mass of atom i. In the present work, the leap-frog algorithm (van
Gunsteren and Berendsen, 1990) has been used to compute the pbsition vectors r(i,t)
using the forces and previous positions of the atoms at a series of time intervals Whic_:h
differ by At.

The set of atomic positions occupied in a given time tj is called conformation
(vector r(i,t), i=1,...,N) and a succession of conformations, in n time intervals, is named
a trajectory (matrix [r(i,t;)], i=1,...,N j=1,...,n). For simplicity, we shall use r(i,j),
i=1,..,N to represent a conformation and [r(ij)], i=1,...N j=I,...n to represent a

trajectory. A trajectory is thus given by the following matrix




r(1,1) r21) ... r(N,1) => 1st conformation

r(1,2) r@22) .. r(N,2) => 2nd conformation )

r(ln) r2n) ... r(N,n) => nth conformation

The trajectories generated by a MD calculation are the basis for the calculation
of the system properties. However, the correspondent binary trajectory files are
extensive and create problems of storage space. The classical lossless compression
algorithms, such as the Huffman coding (Huffman, 1952) used in the compreésion pack
utility, adaptive Huffman (Gallager, 1978) used in compact, LZW (Welch, 1984) used
in compress and LZ77 (Ziv and Lempel, 1977) used in gzip, give poor efficiencies in the
compression of this type of files. Therefore, specific lossy algorithms, which increase
significantly the compression efficiency preserving a high degree of precision, are of
great importance to attain a better approach to this problem.

This work introduces the reader to a new specific algorithm, named Byte
Structure Variable Length Coding (BS-VLC), which increases significantly the
compression efficiencies of the best classical lossless algorithms preserving a high
degree of precision. This algorithm was used in the compression of trajectory files

generated by MD applied to the biological systems trypsin and trypsin:PTI complex.




2. METHODS

2.1. COMPRESSION WITH THE BS-VLC ALGORITHM

The initial data in this process is the trajectory matrix [r@)], i=1,...,.N j=1,...,n
which in the cartesian space can be substituted by three matrices [ry(i,j)] with u=x, y or
z respectively and i=1,...,N j=1,...,n. The trajectories are usually stored in binary files
with every coordinate figuring as a 4 bytes real number. All of this data is submitted to
three steps in a BS-VLC compression: pre-processing, quantization and variable length

coding. These will be analyzed separately.

Pre-processing The proposed methodology here is based on the conversion of the
initial data into differential trajectory matrices [Ary(i,j)], i=1,...,N j=1,...,n in which the

different components are given by coordinate differences, i.e.

Ary(ij) =ro(ij) - G 3)

where r:ef (i) is the reference coordinate associated with ry(i,j). It is nécessary to store
no conformations (standard integral conformations ( [I‘f 41,k)], i=1,...,N j=1,...,np ) in its
original form to allow the rebuilding of trajectory matrices [ry(i,j)] from the
correspondent differential matrices [Ar,(i,j)], in the decompression. The number of
standard integral conformations depends on the criteria used in the selection of the

reference coordinates r:e' (i,j) and will be discussed later in section 2.4.




Quantization This information is further transformed into integer differential
trajectory matrices [u(i,j)], i=1,..,N j=1,..,n with components given by coordinate

differences converted to integers multiplied by a scaling factor (Scale) as follows
u(i,j) = Ary(i,j) X Scale : 4)

The higher the scaling factor, the higher the precision of the process is and the
lower the éompression efficiency becomes; the contrary also applies, i.e., to increase the
compression efficiency one can lower the scaling factor with the added disadvantage of
lowering the precision. It is important to find a middle point which will provide a good

compression coupled with a reasonable error.

Variable Length Coding (VLC)  Subsequently, the elements of the integer
differential matrices [u(i,j)] are compressed using a variable lehgth code, where the

trajectories are subdivided into sets (structures) which are separately coded.

2.2. CODING WITHIN THE BS-VLC ALGORITHM

Byte integer signal coding The integers, components of the integer differential
trajectory matrices [u(i,j)]? can be represented by implicit signal coding or explicit
signal coding. The former is the conventional form of partitioning integers into bytes,
i.e., 1 bit is always kept to represent the signal and the other N-1 bits represent the
respective absolute value; in the latter, signal bits are explicitly codified and grouped

into signal bytes. This representation can be less expensive if all the data is centered in




certain regions. In a 32 bit machine the minimum number of bytes necessary for the

representation of absolute values, according to the interval where they are, is

1 byte <=>[0: 28 -1]
2 byte <=> [28 : 216.1] (5)
3 byte <=> [216 ;224 1]

4 byte <=> [224 :232-1]

However, when we are working with signed integers, one half of this space has to be
used to represent negative integers. Therefore, we end up with the following association

between number of bytes and intervals

1 byte <=>[0:27-1] U [-1:-27]
2 byte <=> [27: 215 -1] U [-27 -1: 215 ] - (6)
© 3byte <=>[215 : 223 .1] U [-215-1: 223 ]

4 byte <=>[223 : 231 .1] U [-223 -1: -231 ]

On the other hand, the signal can be explicitly coded allowing the absolute
values to be represented according to eq. (5). One possible way to perform this is to
subdivide the data in groups of eight elements and to associate the value 1 to their

signals when they are positive and the value 0 when they are negative.

Forexample: + -+ +--++ <=> 10110011




Each group of eight signal bits is then stored in a signal byte and the entire

sequence of signal bytes is stored in a signal vector. The dimension (nsbyte) of this
vector is equal to the number of coordinates over 8. Associating egs. (5) and (6), the 32
bit integer space can be subdivided into seven intervals which need different minimum
numbérs of bytes for coding according to whether implicit or explicit signal coding is
used. All this information has been collected in Table I. It can be observed from the

table that explicit signal coding is favored when data is concentrated in intervals 2, 4 or

6.

Concept of structure ~ Structures are sets within the integer differential trajectory
matrices, where elements exhibit some sort of correlation. BS-VLC is based on the fact
that a structure could be represented by fewer bytes than entire trajectory matrices. All
the elements within a structure (S;) are represented by the number of bytes (nbmax(S;))
necessary to codify the element with largest absolute value. However, it is necessary to
keep one byte extra for each structure to indicate the number of bytes used in its
representation. If a trajectory matrix is subdivided into no standard integral
conformations, n; structures that use implicit signal coding and n; structures that use

explicit signal coding, the byte length of a compressed file (CFBL) is given by

nl n2
CFBL=ovh+(n1+n2)+nsbyte+2 n(S;)xnbmax1(S)+ 2 n(S;)xnbmax2(S;)+nso (7)

i=l j=1

In eq. (7), ovh is the structure organization overhead which indicates how the
trajectory file was compressed. This information is necessary to the decompression

process, but represents a very insignificant part (less than 0.01%) of CFBL. In the same




equation, n(S;) and n(S;) are the number of elements of structures S; and S;, respectively;
nbmax1(S;) is the number of bytes necessary to represent the element of structure S;
with largest absolute value determined using the third column of Table I; nbmax2(S;) is
the number of bytes necessary to represent the element of structure S; with largest
absolute value determined using the fourth column of Table I, ns is the number of bytes
necessary to store the standard integral conformation and nsbyte is the total number of

elements represented with explicit signal coding over 8:

nsg=4 X 3N X ng (8)

n2

nsbyte= >, n(S;)/8 )

j=1
Types of structures The BS-VLC algorithm considers two types of structures:
structures associated with temporal correlations (blocks and conformations within a
block) and structures associated with spatial correlations (atoms ‘within a block and

atomic cartesian coordinates within a block).

Block The block structure is the largest one considered in the BS-VLC method. A
block is a set of sequential conformations and this is a natural structure with the pre-
processing and quantization methodologies adopted in this work. If implicit signal

coding is assumed, the byte length of block B; (BBL(B))) is given by

BBL(B;)= 3N X nconf(B;) X nbmax1(B;) (10)




where nconf(B;) is the number of conformations of block B;. If explicit signal coding is

assumed, BBL(B;) is given by

BBL/(B;)= nsbyte(B;) + 3N X nconf(B;) X nbmax2(B;) (11)
where nsbyte (B;) is calculated as

nsbyte(B;)=nconf(B;) X 3N / 8 ‘ (12)

Conformation within a block The conformation within a block is the smallest temporal
structure considered in the BS-VLC method. In this case, BBL(B;) with implicit signal

coding is given by

nconf ( Bi)

BBL(By)= nconf(B;) + 3N Y, nbmax1(conf(k)) (13)

k=1
If explicit signal coding is assumed, BBL(B;) is calculated as

nconf (Bi)

BBL(B;)= nconf(B;) + nsbyte(B;) + 3N 2 nbmax2(conf(k)) (14)

k=1

Atom within a block In an MD trajectory it is possible to establish spatial correlation.
An atom within a block is a structure that reflects this type of correlation. For example,
in a protein the differential coordinates of the side chain atoms are usually larger than
the differential coordinates of the main chain atoms. In this case, BBL(B;) with implicit

signal coding is given by

10




N
BBL(B;)=N + 3 nconf(B;) Y, nbmaxI(at(k)) (15)

k=1

If explicit signal coding is assumed, BBL(B)) is calculated as

BBL(B;)= N + nsbyte(B;) + 3nconf(B;) ¥, nbmax2(at(k)) (16)

k=1

.

Atomic cartesian coordinate within a block The atomic cartesian coordinate
within a block is a subdivision of the atom structure and it is appropriate when the

potential energy function exhibits some type of anisotropy. Here, BBL(B;) with implicit

signal coding, is given by

N
BBL(B;)=3N+nconf(B;){ 2 nbmax1(x(k))+

k=1
N N
+ nbmax1(y(k))+ Y, nbmax1(z(k))} (17
k=1 k=1
If explicit signal coding is assumed, BBL(B;) is calculated as
BBL(B;)= 3N +nsbyte(B;) +

N N N
+nconf(By) { ), nbmax2(x(k)+ Y, nbmax2(y(k))+ >, nbmax2(z(k))} (18)

k=1 k=1 k=1

11




In egs. (17) and (18) x(k), y(k) and z(k) are the cartesian coordinates X,y and z of

atom k in block B;, respectively.

2.3. DECOMPRESSING THE FILES OBTAINED WITH THE BS-VLC

ALGORITHM

A BS-VLC decompression of files follows three steps which will be analyzed

separately, namely variable length decoding, inverse quantization and post-processing.

Variable Length Decoding (VLD) In this step, the compressed file is decoded

restoring the original integer differential matrices [u(i,j)].

Inverse quantization The differential matrices [u(i,j)] are used to produce the

decompressed differential matrices [AT, (i,j)] with
AT, (i,j) =u(i,j)/Scale (19

The elements of the decompressed differential matrices differ from the original

differential matrices from a given quantity e(Ary(i,j):
AT, (i,j) = Ary(i,j) + e(Aru(i,))) (20)

The magnitude of the error e(Ar,(i,j) depends on the scaling factor selected.

12




Post-processing The decompressed trajectory matrices [T (i,j)] are then
calculated from the decompressed differential trajectory matrices [A T, (i,j)] and from

the decompressed reference coordinates T (i,j).

T, (1)) = £ (@1,)) + AT, (1) 1)

The elements of the decompressed trajectory matrices differ from the elements

of the original trajectory matrices by a quantity e(ry(i,j)).

E, (1.)) = ru(i,j) + e(ru(i)) : (22)

The characteristics of the errors e(ry(i,j)) depend on the type of the coordinates
ri* (i,j) selected. The nature of these dependencies will be discussed later in section 2.4.

A flow chart of the BS-VLC algorithm is given in Figure 1.

2.4. SELECTION OF THE REFERENCE COORDINATES

Several alternative selection criteria are possible to choose the reference
coordinates ri* (i,j) used in eq. (3). The characteristics of the errors e(ry(i,j), in eq. (22),

are conditioned by the reference coordinates selected. We have considered the following

types of reference coordinates:

13




Atomic coordinates - The reference coordinates are defined as the atomic coordinates

immediately before the present ry(i,j) coordinates
re (i,j) = ry(ij-1) (23)

The standard integral conformation is the first conformation of the trajectories

ry(i,1), with the necessary number of bytes to be stored, given as
nso=4x 3 na @24
Equation (21) becomes
L, (1)) = §,(@j-1) + AT, (1)) : . (25)
Substituting eq. (20) into veq. (25), one obtains
L, (1)) = T, (ij-1) + Ary(i,j) + e(Ary(i,j)) (26)

Repeating this substitution for all the T, (i,j-1) we obtain
i J
E (L) =ru@) + Y, Aryik)+ Y, e(Ary(ik) @7,
k=2 k=2
or

14




EGj) =)+ Y, e(Ar(ik) | (28)

j
k=2
Comparing egs. (28) and (22), the errors e(ry(i,j) can be calculated as

e(ruif)) = Y, e(Ary(ik) - (29)

k=2

If the successive values e(Ar(i,j)) are not well compensated this will originate

cumulative errors e(ry(i,j)).

Atomic coordinates within a block One possible methodology which partially
prevents the cumulative nature of the error inherent to the previous selection, consists in
truncating its accumulation at the end of each block. In this situation, it is necessary to |
store, not only the first conformation of the trajectory, but also the first conformation of
all the blocks. Consequently, the error, egs. (26)-(28), is still cumulative within a block
but becomes null for the transition between the last conformation of a block and the first
conformation of the next block. The compression efficiencies are also lightly reduced

by this procedure:
nsp =4 X 3N X nblo - 30)
where nblo is the total number of blocks used.

Decompressed atomic coordinates  Here, the reference coordinates are defined as

15




£ (i)= £, (1) 31)
Equation (3) becomes,
Ary(i,j) = ru(ij) - T, (0j-1) : (32)
and eq. (20) can be rewritten as
AT, () = ro(i) - F (1) +e(Ara(i) (33)
Equation (33) can be rearranged as
., E, (ij-1) + AT, (i,j) = ru(i,)) + e(Ary(i,))) (34)

or

£ (i) = ru(ij) + e(Ary(.j)) | 35)

Comparing egs. (35) and (22), we conclude that the errors e(ry(i,j)) can be

calculated as
e(ry(i,j)) = e(Ary(i,))) (36)

Here, the error becomes non cumulative preserving the compression efficiency

obtained with reference coordinates a). This formulation corresponds to the classical

16




scheme DPCM (Differential Pulse Code Modulation) (Jayan and Noll, 1984) which is
the basis of several audio, image and video compression algorithms such as JPEG
(Wallace, 1991) and MPEG (ISO/IEC, 1994).

The best way to evaluate the cumulative characteristics of the error associated
with the compression/decompression process is to represent the conformational root

mean square deviation (rms) between the decompressed T, (i,j) and the original

coordinates ry(i,j),

ms={[ Y, (F (@) - @)’ + (F @) - 1) + (R i) - @) VEN - DY (37),

i=1
as a function of simulation time.

The total mean square deviation (rms) is given by:

j=t =l

n N '
mms={[ D, D, (E, Q) Txlf)H(F, @)y @) F, (1)) VENxn-D}?  (38)

allowing an evaluation of the global precision of the compression/decompression

" process.

17




2.5. IMPLEMENTATION OF THE BS-VLC ALGORITHM

In the BS-VLC compression scheme the following procedure has to be

considered

Pre-processing

1) Read initial data [r,(i,j)].

2) Select the number of blocks (nblo).

3) Select the reference coordinates (atomic coordinates, atomic coordinate within a
block or decompressed atomic coordinates).

4) Store the standard integral conformations [If G,k)l.

5) Calculate the differential trajectory matrices [Ary(i,j)].

Quantization
1) Select the scaling factor (Scale).

2) Calculate the integer differential matrices [u(i,j)].

VLC
For each block:

1) Select the structure (entire block, conformation within the block, atom within the
block or atomic cartesian coordinate within the block) and the signal coding (explicit
or implicit) which will allow a more efficient compressioﬁ of the block (éqs. (10)(18)).

2) Compress the block using the structure and the signal coding selected in 1).

The byte length of the compressed file (CFBL) is given by

18




nblo
CFBL=ovh+ » BBL(B))+ nso (39)

j=

In the BS-VLC decompression scheme the following procedure must to be

considered:

VLD

For each block:

1) Read the structure (entire block, conformation within the block, atom within the
block or atomic cartesian coordinate within the block) and the signal coding (explicit or
implicit) used in the compression.

2) Decompress the block using the structure and signal coding read in 1) (the integer

differential matrices [u(i,j)] are rebuilt).

Inverse quantization

1) Read the scaling factor (Scale).

2) Calculate the decompressed differential matrices [A E, (i,j)].
Post-processing

1) Read the standard integral conformations [1‘,? (i,k)].

2) Calculate the decompressed trajectory matrices [ F, (i,j)].
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3. RESULTS AND CONCLUSIONS

In this work two solvated proteic systefﬁs, trypsin and trypsin:PTI complex,
have been studied. Trypsin is a digestive enzyme and PTI (Pancreatic Trypsin Inhibitor)
is a natural inhibitor of trypsin.

In the MD simulations (Melo and Ramos, 1997), all the water molecules and
amino acid residues within a 154 sphere, centered in the active center of trypsin, were
allowed to move. Harmonic forces were used to restrain any water molecule from
leaving the 15-18 A boundary; this was achieved by constraining the oxygen atoms of
the water molecules to their initial positions using a force constant of 0.6 kcalmol A,
The other residues were included in the determination of the energy and forces, but
were kept fixed in their starting positions. The choice for performing the MD
calculation in this way had its reasons in the size of the simulation which would have
been prohibitive otherwise (Melo and Ramos, 1997). A total number of 1815 atoms for
solvated trypsin and 1666 for solvated trypsin:PTI were allowed to move during the MD
simulations. Newton’s equations of motion were integrated every 0.001ps using the
leap-frog algorithm (van Gunsteren and Berendsen, 1990) and 120 ps trajectories were
generated for both systems studied. Total simulation time was 6 240 ns for trypsin, 6
400 ns for trypsin:PTI and 12 640 ns for both trypsin and trypsin:PTI. The trajectory

matrices have the following dimensions:

r.(1815,6000) = for solvated trypsin

ry(1666,6000) = for solvated trypsin:PTI
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All simulations were carried out with the program CHARMM (Brooks et al.,
1983) and the two trajectories were compressed using the lossless compressors
(compress, gzip, pack and compact) as well as the BS-VLC algorithm.

In the BS-VLC compressions, a total number of 60 blocks was used. Preliminary
compressions, using the three alternative reference coordinates (atomic coordinates,
atomic coordinates within a block and decompressed atomic coordinates) and a scaling
factor of 10°, were performed. The conformational root mean square deviation (rms)
was computed as a function of simulation time. The results obtained are presented in
Figure 2; they confirm that atomic coordinates, atomic coordinates within a block and
decompressed atomic coordinates lead to a cumulative, a truncated cumulative and a
non cumulative error, respectively. Consequently, as has been pointed in section 5, the
decompressed atomic coordinates are the most appropriate selection for reference
coordinates. This selection was used in the remainder BS-VLC compression presented
here.

To evaluate the efficiency of the BS-VLC algorithm, several compressions of

trypsin and trypsin:PTI trajectory files were performed, using 28 different values as

scaling factors. The total root mean square deviations ( rms) were computed for all the
cases. The results obtained are presented in Table II and Figure 3. Additionally, the
compression efficiencies, obtained with different algorithms, can be visualized in Figure
4.

The analysis of both Table II, Figure 3 and Figure 4 is extremely favorable to the
BS-VLC algorithm. In fact, when a scaling factor of 10’ is used BS-VLC algorithm has
a lossless behavior and presents a significant larger compression efficienby than the

classical lossles algorithms.
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Green et al. (1995) have made available a compression algorithm which reaches
70% as compared to 75% achieved in this work. Additionally, this algorithm leads to a
cumulative error in the compression/decompression process while BS-VLC has non
cumulative error behavior.

Here, all the obtained results enable us to conclude that BS-VLC has near
lossless behavior (rms=0) when a scaling factor close to 107 is used. In this situation,
BS-VLC nearly triplicates the compression efficiency of the best classical lossless
algorithm ( LZ77 used in gzip). In addition, larger compression efficiencies (=50%) can
be managed with BS-VLC preserving a high degree of precision (rms between 10 and
10%). For compression efficiencies larger than 50%, the precision decreases

significantly. However, a compression with the maximum efficiency possible (75%)

within this algorithm can be performed with good precision ( ms=107).
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FIGURE CAPTIONS
FIGURE 1. Flow chart of the BS-VLC algorithm. The following steps have to be
considered: |
Compression- (1) Pre-processing; (2) Quantization; (3) VLC. Decompression- (1')

VLD; (2') Inverse quantization; (3') Post-processing.

FIGURE 2. Conformational root mean square deviations (rms) between the original
trajectories, obtained by molecular dynamics applied to (A) trypsin and (B) trypsin:PTI
complex, and the trajectories obtained by sequential BS-VLC compression and
decompression with a scaling factor of 10° as function of the simulation time (t). Three
alternative reference coordinates, atomic coordinates (---), atomic coordinates within a

block (...) and decompressed atomic coordinates (—), were used.

FIGURE 3. Total root mean square deviations (rms) between the original trajectories,
obtained by molecular dynamics applied to (A) trypsin and (B) trypsin:PTI complex,
and the trajectories obtained by sequential BS-VLC compression and decompression

with 28 different scaling factors as function of compression efficiency.

FIGURE 4. Byte length (BL) of initial trajectory files, obtained by molecular dynamics
applied to trypsin and trypsin:PTI compléx, and of compressed files obtained using
different algorithms. The compression efficiencies and total root mean square
deviations, between the original trajectory and the trajectories obtained by sequential
compression and decompression, are also indicated within round and square brackets,

respectively.
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Table I: Minimum number of byte coding for different intervals of integers numbers.

Minimum no. of byte coding

interval interval implicit signal | explicit signal
identification coding coding
1 [0:2-1]U[-1:-27] 1 1
2 [27:2%-1]U-27-1:-2841] 2 1
3 25251302825 2 2
4 [2"%:215 1]uf-2-1:-21%41) 3 2
5 [2'¢:2%.1)0[-2!%:-2%) 3 3
6 [22:2%-1]U[-25-1:-2%+1] 4 3
7 2222102227 4 4




able II. Compression efficiencies and total root mean square deviations ( rms ) between the original trajectories,
obtained by molecular dynamics applied to trypsin and trypsin:BPTI complex, and the trajectories obtained by
sequential BS-VLC compression and decompression with a scaling factor (Scale).

Trypsin Trypsin:BPTI
Scale Compression rms (A) Scale Compression ms (A)
efficiency (%) efficiency (%)

1.000x 107 24.7 0.000 1.000x 107 24.7 0.000

9.400 x 106 24.8 6.000 x 109 9.400 x 106 24.9 6.000 x 109
8.850 x 106 24.9 7.000 x 10-° 8.300 x 106 25.0 9.000 x 109
8.300 x 106 25.0 7.100 x 10-° 7.200 x 105 25.1 1.400 x 10-8
7.200 x 105 25.1 1.000 x 10-8 4.108 x 105 26.3 3.664 x 10”7
3.664 x 105 27.3 8.140 x 10-7 3.664 x 103 29.2 6.090 x 10°7
3.220 x 105 30.2 9.290 x 107 3.220 x 105 323 7.790 x 10”7
2.776 x 103 323 1.055x 106 | 2776 x 103 34.6 9.050 x 107
2.332x 10° 33.5 1.321 x 106 2.332 % 105 35.6 1.055 x 10-6
1.888 x 105 34.7 1.653 x 106 1.888 x 103 36.7 1.285 x 10-6
1.444 x 103 38.1 2.182 x 106 1.444 x 105 39.4 1.685 x 106
1.000 x 105 45.0 2.923 x 10-6 1.000 X 103 45.2 3.197 x 106
9.400 x 104 45.7 3.097 x 106 9.400 x 104 45.8 3.421 x 100
8.850 x 104 - 46.1 3.268 x 106 8.850 x 104 46.2 3.651 x 106
8.300 x 104 46.4 3.507 x 10-6 8.300 x 104 46.4 3.884 x 106
7.750 x 104 46.6 3.767 x 106 7.750 x 104 46.6 4.130 x 106
7.200 x 104 46.7 4,077 x 10-6 7.200 x 104 46.7 4.399 x 10-6
6.650 x 104 46.8 4.430 x 106 6.650 x 104 46.8 4.699 x 106
6.100 x 104 46.9 4,787 x 106 6.100 x 104 46.9 5.021 x 106
5.550 x 104 47.0 5.221 x 106 5.550 x 104 47.0 5.399 x 106
5.000 x 104 48.2 5.794 x 106 5.000 x 104 48.4 5.849 x 106
4,552 x 104 49.1 6.392 x 106 4,552 x 104 49.3 6.404 x 106
4,108 x 104 49.5 7.057 x 10-6 4.108 x 104 49.6 7.052 x 106
3.664 x 104 49.8 7.889 x 10-6 3.664 x 104 49.8 8.042 x 106
3.220 x 104 50.0 9.005 x 106 3.220 x 10* 50.0 9.134 x 106
1.000 x 103 57.9 2.886 x 104 1.000 x 103 60.1 2.887 x 104
5.000 x 102 . 654 5.773 x 104 5.000 x 102 66.4 5.772 x 104
1.000 x 102 . 750 2.886 x 103 1.000 x 102 75.0 2.887 x 103




ABSTRACT

Molecular dynamics is a well-known technique very much used in the study of
biomolecular systems. The trajectory files produced by molecular dynamics simulations
are extensive and the classical lossless algorithms give poor efficiencies in their
compression. In this work, a new specific algorithm, named Byte Structure Variable
Length Coding (BS-VLC), is introduced. Trajectory files, obtained by molecular
dynamics applied to trypsin and trypsin:PTI complex, were compressed using four
classical lossless algorithms (Huffman, adaptive Huffman, LZW and LZ77) as well as
the BS-VLC algorithm. The results obtained show that BS-VLC nearly triplicates the
compression efficiency of the best classical lossless algorithm, preserving a near
lossless behavior. Compression efficiencies close to 50% can be obtained with a high
degree of precision and the maximum efficiency possible (75%), within this algorithm,

can be performed with good precision.
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Abstract

The preparation of ozone/nitrogen oxides mixtures in air containing the nitrate radical,
their reaction with the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC), and the determination of the reaction products in comparison to those obtained from
a reaction with only ozone in air is described by MALDI-FTMS. The results indicate the

importance of nitrate radical in ozone toxicity.

Introduction

Ozone is the most abundant oxidant in polluted air and its adverse effects on human
health are well documented.' The lung is the organ that is most affected by ozone. Short term
expoéure to high levels of ozone leads to acute inflammatory reactions and pulmonary edema
whereas prolonged exposure to lower levels produces emphysema, bronchopneumonia and
fibrosis. Numerous studies have established the ability of ozone to react with species present
in the lung; they include the amino acids, peptides and proteins.>® However, the primary

target of ozone is thought to be the unsaturated fatty acids (UFA) in the fluid layer of the lung




lining and in the epithelial cell membranes of the lung.*® Because of its reactivity, ozone
does not penetrate far into ‘the cells that line the airways; consequently, many pulmonary and
all extrapulmonary effects of ozone must be caused by messenger species. Thus, inhalation of
even low ozone concentrations can cause the release of proinflammatory mediators in the
lung, and it is these mediators that lead to the inflammation and other effects associated with
ozone.

The cascade hypothesis’ states that lipid ozonation products (LOP) relay the effects of
ozone into deeper tissue strata at the lung-air interface than ozone itself can reach. LOP, rather
than products from ozonation of proteins or nucleic acids, are thought to be signal
transduction species because ozonation of UFA leads to small, diffusible, stable or metastable
species, and because lipid oxidation products are known to act as signal transduction agents in
other systems. Thus, the likely candidates for signal transduction species are LOP produced in
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the Criegee ozonation process, which gives a predictable spectrum of products. Recent

results by Friedman, Pryor and coworkers strongly support this hypothesis.'>"’
Nitrogen oxides (NO and NO) are usually present in a mixture with other air

1819 With ozone present, all nitric oxide is converted to

pollutants in real-life exposures.
nitrogen dioxide. Early studies indicated that the responses to ozone and- nitrogen dioxide
were additive, but it was also found that the immediate effects in rat lungs were dissimilar
with respect to lipid peroxidation, lung protein or nonprotein sulthydryl levels.”® Starting in

218 jnvestigated the oxidation of biological molecules by

the 1980’s, Pryor and coworkers
nitrogen dioxide. The relatively high tolerance for both long-term and short-term exposure to
ambient nitrogen dioxide made it unnecessary to include NO, chemistry in the cascade

hypothesis of ozone toxicity. However, the combined action of ozone and nitrogen dioxide

must take account of the fact that these gases rapidly react to form the nitrate radical, a very



potent oxidant. In fact, NOj3 reacts with unsaturated organic molecules morevthan a thousand
times faster than does ozone.**

Here we report the preparation of ozone/nitrogen oxides mixtures in air containing the
nitrate radical. The reaction of such mixtures is carried out with 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) applied on a surface and the reaction products are
determined by matrix-assisted laser desorption/ionization Fourier transform mass
spectrometry (MALDI-FTMS). The results are compared with those obtained from parallel

reaction when only ozone in air was used to react with POPC. The optimal conditions for

‘determination the reaction products and elucidation of the synergistic effects of ozone and

nitrate radical in the heterogeneous reaction with lipids are determined.

Experimental

Reactions. An apparatus (Fig. 2) consisting of an evacuable glass reaction column and
mixing chamber, maintained in the dark because of the ready photodegradability of nitrate
radical, was used to perform the reactions. The lipid, POPC (Sigma Chemical Co., St Louis,
MO), dissolved in dichloromethane and spread inside the reaction column, yielded a thin film
after evaporation. The lipid film was allowed to react with the gas mixture from the mixing
chamber for a specified time. If necessary to ensure completion of the reaction, the previously
reacted thin layer of sample was redissolved and, using the same procedure, was again
exposed to the same gas mixture. The gas reaction mixtures were prepared by mixing streams
of known concentrations of ozone in pure oxygen with a stream of pure nitrogen, which did or
did not contain a known concentration of nitric oxide. The concentrations within the gas
streams produced air samples with environmentally-relevant concentrations of ozone and

nitrogen dioxide (appr. 100 ppb of each). Thus, in conditions of excess ozone, fast conversion




of nitric oxide produced O3/NO; mixtures which, in the dark, react slower to give nitrate
radicals. Either ozone/air or (ozone + nitrogen oxides)/air mixtures were allowed to react with

the lipid films, and the reaction products of each reaction were compared.

Mass spectra. Mass spectra were recorded on an FTMS 2001 DD spectrometer
(Finnigan FT/MS, Madison, WI, USA) equipped with a 3 T superconducting magnet, and a
Nicolet 1280 data station using a pulsed nitrogen laser (VSL-337ND-S, Laser Science, Inc.
Franklin, MA, USA) at 337 nm for MALDI experiments. We initially used 2,5-
dihydrobenzoic acid (DHB) as the MALDI matrix. It gave abundant positive and negative
fragmentation ions for the POPC and its ozonation products but little or no protonated (m/z =
760), sodiated (m/z = 782) and ozonated (m/z = 808) molecular ions. To avoid fragmentation
we tested unsuccessfully several other matrices (e.g. p-nitrobenzoic acid and 3-nitrophenol)
and sample probe cooling. Only 3-nitrobenzyl alcohol as a matrix with a cooled sample probe
yielded phospholipid ions and mass spectra of their reaction products with little or no
fragmentation and formation of alkali metal adduct peaks. All the spectra were collected after

a single laser shot.

Calculations. Because the rate constants for all the respective reactions are known
(Table 1) it is possible to calculate development of NOs radical concentration starting with Os
+ NO at room temperature and normal pressure in air. Calculation results for the first 1000 s
of 50 ppb NO with 100, 150 and 200 ppb of ozone show final concentrations of 0.11, 0.24 and
0.60 ppb for NOs, and 48, 96 and 141 ppb for ozone, respectively. In these calculations the
photoreaction of NO; (dark conditions) and decomposition of 0zone (amounting less than 10
% for the investigated time period as independently determined) were omitted. The results are

shown in Fig. 2a-c.




The ratio of O3/NO; in our reaction conditions is expected to be ~ 500 which gives the
nitrate radical a more thari twentyfold advantage over ozone in reaction with POPC. Although
N,Os is present in higher concentration than is NOs, it is of only minor importance because it

reacts with water yielding HNO; which will remain bound.
Results and Discussion

Compared to prior ionization techniques, phospholipid analysis with MALDI-FTMS
provides much higher mass resolving power and sensitivity.”*°  The only studies of lipid
ozonation products but not with NO; present were done by Finlayson-Pitts and coworkers®®*’
using fast atom bombardment (FAB) and the investigation of phospholipids by Marshall and
coworkers® using MALDI-FTMS. The latter study is very useful for the present investigation
because it provides an experimental fragmentation scheme for POPC and introduces the use
of cooled matriées which is crucial for the study of reaction products with ozone and nitrate
radical.

Using a 3-nitrobenzyl alcohol matrix (~ 3000:1 matrix-to-analyte ratio) we observe
negligible fragmentation of the lipid and a weaker sodiated molecular ion which sometimes is
not observed. The mass spectra of POPC and its reaction products either with ozone or with
ozone containing NO; obtained using a 3-nitrobenzyl alcohol matrix are shown in Fig. 3a-c.
The reaction of POPC with ozone is expected to proceed via the unstable primary ozonide
_which fragments to the secondary (Criegee) ozonide via zwitterionic species (Scheme 1). The
Criegee ozonide decomposes yielding an acid and aldehyde pair; ie., either PC/AC +
ALD/C9 or PC/ALD + AC/C9, respectively (see Scheme 1 for definitions and structure). The

MALDI mass spectrum of the products of incomplete ozonation reaction of POPC (Fig. 3b),

which is similar to that obtained by using FAB®, confirms the products predicted by




Scheme 1 indicating a slightly higher probability for AC/C9 than ALD/C9 formation (i.e.
higher PC/ALD than PC/AC peak).

The comparison of the products after extensive reaction of POPC (Fig. 3c) with ozone
(LHS) and the ozone/nitrogen oxides mixture (RHS) shows the products are similar but with a
dramatic change in their yields. In the mass spectrum of reaction products with ozone, a new
ion of m/z = 638 is observed which could correspond to loss of O, frdm some peroxide type
product structure (X-O;) whereas in the reaction products including nitrate radical an
unknown ion of m/z = 623 appears which could correspond to loss of NO, from a similar
nitrite structure (X-ONO). The formation of new products with (O3 + NO,) in dark is not
surprising since NO; exhibits much higher reactivity with unsaturated organics than ozone.?*

These results indicate the irhportance of using realistic and more complex mixtures of
oxidants in study of ambient ozone toxicity. Clearly, further study of these complex mixtures

will be rewarding.
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Table 1. Reactions and their rate constants used in the simulation of product formation from

ozone/nitric oxide mixtures in air.

Reaction Rate constants’
NO + O3 — NO; + 0, 1.8 x 10 cm’molecules™
NO + NO; — 2NO, 2.6 x 10! ecm’molecules™
NO; + 03 = NO3 + O, 3.2 x 10" cm’molecule™s™
NO, +NO; + M — N;Os 2.0 x 10™? cm’molecule’s™
N;Os +M — NO, + NO; + M 6.9x10% s
NOj; +NO; — 2NO, + 0, 8.5 x 10™ cm’molecule’s™

* from CRC Handbook of Chemistry and Physics, 79™ Edition, David R. Lide, ed., CRC
Press, Boca Raton, 1998, p. 5-105.

12




i
CH,0.C. (CH,),4.CH;
T
CHO. C . (CH,);CH=CH(CH,);CH; + 0

CH,0. P.O.(CH,), N*(CHs);

0 J

1
CHZOCC . (same)o/o\

] \
— PRIMARY
CHO. C . (CH,;HC—CH . (CH,);CH; FRIMARY

——=0

CH,O0. (same)

0 / \ i

C .
CH,0.C. (CHy)4.CH; £H0 5. (CHahg CH; OCH
o)

H II
Il “ + 000 + (CHyy
CHO. C . (CH,);.CHO + -ooc* CHO.C . (CHp)7HC". 00 P2
? (CH,CH; [ . CHs
H,0. P.O. .
CH,0. r.o.(cxriz)z.rr*(mg)3 CH, f O . (CHz, N'(CHs)s
& o)
N % &
Il
CH,0.C. (same)
0 N
il I 20\ CRIEGEE
CHO.C. (CH#HC,5 4 CH(CHy)CHs (SECONDARY)
af o™~y OZONIDE
CH,0. (same)
b
M % 7 \
CHzO(.)C.(CHz)M.CH:; . COOH : CHzo(.)C. (CHy)14.CH; OCH
1l Il
CHO. C .. (CH,);.CHO + (<':H2)7 CHO. C . (CH,);COOH + (‘|3Hz)7
0
i CH; T CH;
CH,0. r. O . (CHp), N*(CHa); CH,0. |P' O .(CH,), N*(CH3)3
o o
PC/ALD AC/CY PC/AC ALD/C9

Scheme 1. Product formation in the reaction of POPC with ozone according to the Criegee

ozonation process.

13




O; generator
Dasibi
Mixing Clean air
. chambe generator 02
reaction
Trap column
—
| S——
flow
meter
NOin N
CRANOX

system

Figure 1. Apparatus for carying out the reaction of POPC with ozone and ozone/nitric oxide

mixtures in air.

14




a) 100 ppb ozone + 50 ppb NO

1000
100
0,
2 0, NO;
a
o
€
2
b 10
=
[
H
g
H N;Os
e e—1
1
0.1 NO:  no
0 100 200 300 400 500 600 700 800 900 1000
time/s
b) 150 ppb ozone + 50 ppb NO
1000
100 P 0,
g = 3,
o
€
2
-l 10
§
2 N;Os
-3
o //
1 .
V -
o1 // "
] 100 200 300 400 500 800 700 800 200 1000
time/s
c) 200 ppb ozone + 50 ppb NO
1000
N O3
100
0,
4 NO,
a
] K
2
' 10
§ //— NOs
c
o
o
1
/// NO;
0.1 . . NO
0 100 200 300 400 500 600 700 800 800 1000
time/s

Figure 2. Simulation of first thousand second period of product development from a mixture

of 50 ppb of NO with

a) 100 ppb

b) 150 ppb and

c) 200 ppb of ozone in air using rate constants from Table 1.

15




()

(b)

FTMS OF POPC

{ 100

Relative agbmdance (%)

M+H

M+Na

o
650

FTMS OF POPC AFTER 10 min REACTION WITH O;

T
700

Lot S B |

n/2°

100

(%)

Relative aggndance

pciaLD

PC/AC

M+H

M+Na

M/Oz

650

800

16




©

o @) with ozone b) with ozone + NO,

- PC/ALD PCIAC
®
@
[3)
c
©
0
c
o0,
o0
o
2 PC/IALD
E ('N')Oz)
~ ?
a

(-02)
? |PCIAC
o |--|--- lu T O T TrTTT T YT T T T T T T TrTrTryTy Tr T
600 650 700 600 650 700 750
m/z

Figure 3: MALDI FTMS positive ion spectra from single nitrogen laser shots on cryogenic
matrices of 3-nitrobenzyl alcohol in 3000:1 ratio with the following analytes:

a) pure POPC

b) POPC after 10 min exposure to ozone and

¢) reaction products of POPC with ozone (LHS) and ozone/nitrogen oxides mixture (RHS).

17




UNIVERSAL METRIC PROPERTIES OF THE GENETIC CODE

Nikola Stambuk

Rudjer Boskovi¢ Institute, Bijeni¢ka 54, HR-10001 Zagreb, Croatia

Correspondence to: Dr. Nikola Stambuk, Subiceva 16, HR-10000 Zagreb, Croatia.

e-mail: stambuk@rudjer.irb.hr




ABSTRACT

Universal metric properties of the genetic code (i.e. RNA, DNA and protein coding) are defined by
means of the nucleotide base representation on the square with vertices U or T = 00, C =01, G= 10
and A = 11. It is shown that this notation defines Cantor set and_{Sma]e horseshoe map representation
of the genetic code, classic table arrangement and Siemion one-step mutation ring of the code. Gray
code solution to the problem with all codon positions, and an exfention to octal coding system are
given. Finally, unified concept of the genetic code linked to the Cantor set and horseshoe map is
introduced in the form of a classic combinatorial 4 colour necklace model with three horizontal
frames of 64 coloured pearls (bases) and vertically hanging decorations of triplets (codons). Three
horizontal necklace frames define Crick's code without comma, and vertical necklace decorations
define the evolutional code. Thus, the type of the code depends on the level or direction of the
observation. Fibonacci dynamics and Cantor set-Farey tree partition of codon and amino acid groups

are discussed and explained. This method of genetic code analysis is named SCA procedure.

/

Key words: RNA, DNA, protein, genetic code, Gray code, circular, necklace, Cantor set, horseshoe

map, golden mean, Farey tree




INTRODUCTION

The protein coding and synthesis in biological systems is, together with all other information of the
genome, found in DNA and RNA string; consisting of 4 nucleotide base combinations (U or T, C, A
and G).!? The four bases define 64 codon triplets that specify 20 amino acids and 3 stop codons for
the protein synthesis.l'3 The aim of this paper is to define the universal metric properties of the codon
and nucleotide base recombination. This will be done by addressing three dimensions of the problem,

as follows.

First, we show that the quadratic binary representation of the 4 bases on the unit square may be
projected on the Cantor set for all codons and amino acidé. It is proved that for the one-dimensional
projection symbolié binary coordinates provide the Gray code solution to the problem of amino acid
coding. Counter-clockwise and clockwise changes of the base positions on the square define the link
of the classic genetic code table and Siemion one-step mutation ring of the genetic code (which is

~ linked to the physico-chemical properties of the amino acids).

Second, we show that Smale horseshoe map representation of binary and Cantor codon (amino acid)
positions defines classic table of the genetic code. This result shows that the genetic code table is a
reflection of the standard horseshoe map, often used in the analysis of nonlinear and chaotic systems.
The possibility of analysis by binary and octal coding system is discussed and octal code ‘addresses for

codons and amino acids are given.

Third, we show that a classic combinatorial 4 colour necklace problem®, with each colour

representing a nucleotide base projection on the unit square, defines the unified concept of the
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genetic code. Three horizontal frames of the necklace, consisting of 64 coloured pearls (bases),
make Crick's comma-less code and vertically hanging decoration triplets (codons) define evolutional
code. Thus, it is proved that the necklace model defines both concepts, depending on the level of

observation and/or position of the observer.

Finally, the process of base, codon and amino acid recombination in the genetic code table is
discussed with respect to their Cantor set and Farey tree partition frequencies. It is emphasised that
this interaction leads to the Fibonacci, i.e. golden ratio, based dynamics in selecting codon and amino
acid families, as previously discussed by Schroeder and Stambuk.>® This method of genetic code

notation and analysis is named SCA procedure.

RESULTS AND DISCUSSION

Primary coding problem - metric on the unit interval

The notation |

We introduce the binary representation of 4 nucleotide bases on the square with vertices 00, 01, 10,
11 in a manner defined for Cantor set by H. Steinhaus in 1917 (when discussing interesting
properties of the set noticed by S. Banach).” The notation Uor T=00, C=01, G=10 and A=
11 is presented in Figure 1. It has the following properties:

The combination of 2 digits (0 or 1), denoting primary and secondary characteristics of the
nucleotide base describe each of the letters according to the group subdivision/discrimination
principles (1st digit purine-pyrimidine, 2nd digit strong-weak H bond discrimination). The first and
weak H bonding pyrimidine base U or T =00is ciiscriminated from the next strong H bonding

pyrimidine base C = 01 by the second digit notation. Full complementarity in obtaining weak (A)
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and strong H bonding purines (G) is achieved by 0 <>1 pyrimidine changes (to A=11,G= 10), or

vice versa.

Codon positions on the binary tree

Table 1 shows the binary notation for all 64 codons and 20 amino acids. To define more precisely
the positions of particular codon intervals of the binary tree with respect to the quadratic base
mapping we examine invariant Cantor set with the method of symbolic dynamics in a standard
manner.>® This was performed since Cantor set possesses two properties related to the binary coding
of the Figure 1 notation:>®

1. binary decomposition of the initial segment into 2" segments projected on (n-1)" binary tree level,

2. partitioning of the observed set by excluding 1/3 of its original length per each of the tree levels.

The relative location of different coding intervals and their orientation is additionally specified in
Table 1, by the nodes of alternating binary tree and their symbolic coordinates (names).? Brieﬂy, the
left half of the unit interval is labelled O and the right one 1. For x<1/2 and its derivative f(x)>0,
with f{x) = Ax(1-x), A>4, the pairs of the .initia] binary tree preserve orientation and for x>1/2,

£,(x)<0 they reverse orientation in the alternating binary tree.®

Gray code solution to the metric problem

Symbolic coordinates of codon and amino acid locations on the Cantor set in Table 1 represent the
Gray code solution to the n=6 digit binary notation for 2" = 64 codons. This result has been published
by M. Gardner in 1972.° Gardner's Gray numbers that solve the puzzle for n=6 digits/rings are
symbolic addresses of different codons in Table 1, and Cantor set solution to this problem represents
their projection to [0, 1] interval according to their appearance. Consequently, the stretching and

folding of the quadratic map with symbolic dynamics on the unit interval,® keeps track and
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information of the hypercube codon (amino acid) representations by means of the Gray code. Two

dimensional representation is defined via horseshoe map.

The unit interval Cantor mapping in Table 1 solves complementary coding problem via binary tree
codon projection, since Gray code solution requires at least 32 binary numbers from the first part of
the table. Complementary addresses for the second half of the table are symmetrically arranged at

opposite Cantor positions and obtained by 0 <>1 digit switch.

Siemion's mutation ring and genetic code table

Table 2 shows that permutatio‘n;of the 4 amino acid families in classic genetic code Table 3 (CUGA,
UGAC, GACU and ACUG) identify Siemion’s one-step mutation ring of the genetic code' presented
in Table 4. This is done by means of UC/CU, AG/GA replacements (U row/column), C/G - G/C
mutation (C row/column), A/U mutation (A row/column) and C/G mutation (G row/column). Four

amino acid families are defined by a simple algorithm of the binary codon notation (Figure 1).

The extraction of the Siemion's mutation ring from the standard genetic code table, by means of the
Cantor set based nucleotide notation (and algorithm) in Figure 1, is of considerable importance since

Siemion's ring is related to the physico-chemical properties of different amino acids >"°

Secondary coding problem - Horseshoe map metric and octal coding

Smale's Horseshoe Map

The Smale horseshoe map is the example of a chaotic hyperbolic invariant set and the map often
behaves like skeleton on which chaotic and periodic orbits of the system are organized.”'' The
horseshoe is a mapping of the unit square (Figure 1) which contracts the horizontal directions,

expands in the vertical direction, and then folds. The mapping is only defined on the unit square and
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points that leave the square are ignored.® Forward and backward iteration of the horseshoe map

generate the locations of the periodic points.*!!

Amino acid and codon horseshoe mapping

By iterating the map we specified the locations of a periodic orbits within the homoclinic tangle of
the horseshoe. Table 5 gives the labelling scheme for horizontal and vertical branches from a pair of
alternating binary trees. The projections of 2 binary triplets (or 2 octal numbers) according‘to the
horseshoe pattern extract standard table of the genetic code (Table 3), which proves that this map
defines the patterns of the codon recombination buried in the code. Patterns of the first, second and
third base changes also satisfy and confirm standard square notation with 4 binary addresses
presented in Figure 1, typical of the horseshoe map. The algorithm in Figure 1 is therefore confirmed

for the genetic code and Table 5 represent its proper labelling scheme.

Since the invariant horseshoe set is a product of two Cantor sets intersections in horizontal and in
vertical directions,® the Cantor set projection of the genetic code is also proved for a two-

dimensional case.

Octal coding

Further extension of the coding system in Table 6 defines 28 pairs of all possible 8 (node) 3-
dimensional cube permutations (i.e. as 8 x 8 codon octades).>"> Three binary digits define octal
number coding, and 28 = 8!/2! (8-2)! pairing combinations are obtained from the permutations of 2
éorresponding octal numbers® (or 2 binary triplets). Eight identical doublets in addition to 56
different dublets define all 64 codons. This pattern is consistent with three letter alphabet permutation

chsisting of two binary, i.e. 0 or 1, choices in the truth table (2° = 8). 1




Tertiary coding problem - Necklace model of the genetic code

Circular code arithmetic and Necklace coding

The genetic and protein circular code is defined by means of a combinatorial necklace model.* This
structure consists of 64 beads of 4 different colours representing 4 nucleotide bases (U or T, C, A,
G). The coloured beds are making decorations that consists of vertically hanging chains of x = 3
beds, which represent each of the codons. Consequently, there are y = 4 distinct vertical chains
that can be made (i.e. number of words of length x = 3 with alphabet of size y = 4). The total
number of possible vertical decorations containing at least two colours each is y‘ -y=60and y=

4 decorations contain the beads of the same colour.

One of the characteristics of this system is that we may define "beheading" as the process where the
top bead is taken and replaced on the bottom.* After some repetitions we observe the initial pattern.
Let b be the smallest positive number of successive behadings (including reverse ones) needed to
get back the original, we have:

I1<b<3 x=ab+c (0<c<b). | m
The initial pattern is restored by x beheadings followed by a lots of b reverse behadings. For ¢ =
0, x=ab,if x isprimeand b > Jwehave b=x,a=1 Ey observing the chains and their first
x - 1 beheadings different collections are made (that cannot be transformed into each other). Thus,
when J* - y chains have been accounted, we get a total of 7 collections y* -y = mx and

y*=ymod x, from which we obtain Fermat's theorem.*

Coding patterns and codon collections

Table 7.a-f presents the circular and complementary coding patterns for all possible codon
collections. It contains two and three colouring collections consisting of 3 transformed/beheaded
codons (12 and 8 collections of 3 triplets, i.e. 60, of 2 and 3 colours respectively) and four triplets of

the same colour. It is shown that there exists the codon arrangement for each of 3 horizontal
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necklace frames (m = mod 1, 2, 3) that is 100% identical to the empirically detected one by Arques
and Michel,? Four triplets of the same colour link the endpoints of the frames enabling the

construction of the three frame automaton (Table 8).

Frame shifts and frame retrieval

Taﬁle 8 shows tha‘; the arrangement of the codons in the frames according to their projection on the
Cantor set, transforms each frame in such way that if one letter shift is performed the next frame is
automatically retrieved (a-d). Few letter changes that occur during the transformations are
permissible and predicted according to Molecular Récognition Theory (RS, QH, D&E) or N-

end rule (K<>N), ™% i.e. the coding pattern is consistent with theoretical and empirical observations.

Unified concept of the genetic code

Presented results indicate that the concepfs of code without comma or of evolutionary code, based
on different premises, strongly depend on the level of the observation/analysis. In the necklacé model
Crick's code without commal> represents three horizontal frames that define necklace chains,
while Dounce's evolutionary code">'® makes vertically hanging beds (codon triplets). Therefore
circular coding necklace algorithm represents an unifying concept of the genetic code. This method,

denoted SCA, enables the genetic code and protein analysis via number theory arithmetic for codes.

Concluding remarks

Fibonacci dynamics and Farey tree

Two dimensional Cantor set projection of the binary (squar-e) notation via Smale horseshoe map
reconstructs the classic table of the genetic code, which proves our result and opens the possibility
for the gene and protein analyses as chaotic dynamical systems. Additionally, the closest intersections
of Cantor set (binary & symbolic) and Farey tree codon projectiqns define "golden amino acids"

(related to the Fibonacci dynamics'®). The Fibonacci dynamics, noticed in the algorithms of the
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genetic code®

1019 2nd in long range DNA correlation exponents,” might arise from two mapping
frequencies of the code. The frequency of Cantor set projection/recombination of the codons (2/3) is
mixed with the frequency (1/2) of the Farey tree that splits the amino acid/codon groups upon each
Cantor set projection level (2° = 64). As shown by Schroeder,’ the frequency resulting from such
Cantor set-Farey tree interaction is the golden ratio 0.618 = 2+1/3+2 = 3/5, which explains

previously mentioned phenomena. Some mathematical and dynamical aspects of those interactions

have been discussed by Schroeder and Stambuk > ¢

TG/CT excess, TA/CG deficiency and language decoding

Binary coding quadratic algorithm (Figure 1) based on the pyrimidine-purine (T-G) and strong-week
H bonding (T-C) discrimination is in accordance with the universal rule of TG/CT excess and
TA/CG deficiency in coding and noncoding DNA regions*"?, since TA/CG does not satisfy second
digit strong-week discrimination (and consequently may be less likely to appear). Another important
aspect of this study is related to the discovery that non-coding DNA sequences posses properties
characteristi;: of natural languages, while the coded DNA sequences correspond to the coded
language structures.>?* In this context the concept presented in this study may contribute to the

extraction/decoding of the programming language of DNA and RNA strings.
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Figure 1. Binary notation of the 4 nucleotide bases based on purine-pyrimidine and strong-weak H
bonding principles. Complementary codon pairs and Siemion's one step amino acid mutation ring"®
are defined by means of the hypercube node distances (Table 1) and related permutations of Table 3
with 4 nucleotide families, as shown in Table 2. Dotted line = 1st base permutation, solid line = 2nd

base permutation, e = start; 3rd base permutation involves CU and AG pairs.
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Table 1. Binary and symbolic notation of RNA, DNA and amino acids. |

aa codon |Cantor |binary |symbolic notation aa codon |Cantor |binary symbolic notation
¥ 4 |points |notation 1 1 |[points |notation
l F yuy |0 00 00 00 | F UUU| 000000 {K AAA |1 111111V GUU 1100000
F yuc {1243 {000001 |F UUC [00 00 01 {K AAG |2427243 111110V GUC {10 0001
L UUG |2243 |000010 |L UUA |0000 11 |N AAC [2417243 (111101 |V GUA 1100011
L UUA [37243 1000011 (L UUG (000010 |N AAU [2407243 {111100 |V GUG {1000 10
S UCU |6/243* 1000100 |S UCG |00 01 10 |R AGA |237243*1111011|4 GCG {1001 10
S ycc |77243 (000101 |S UCA (0001 11 |R AGG [2362243 11110104 GCA 1100111
S UCG [8243 [000110]S UCC {0001 01}S AGC [2357243 1111001 |4 GCC 1100101
S UCA 9243 [000111|S UCU {0001 00|S AGU [234243 1111000 |4 GCU (100100
C UGU |187243*100 1000 | Y UAU |00 11 00 |T ACA |225243*{110111|D GAU 101100
C UGC |197243 1001001 {Y UAC [00 1101 |T AcG |224/243 |110110|D GAC 1101101
W UGG 201243 [00 1010 |ochre UAA |00 11 11 |T ACC |2237243 1110101 [E GAA4 101111
opal UGA (217243 [00 10 11 |amber UAG |00 171 10 |T Acu |222/243 110100 |E GAG 1101110
Y UAU [247243*(00 1100 | ¥ UGG (0010101 AUA |219243*|110011 |G GGG [101010
Y UAC 125243 [00 1101 {opal UGA |00 10 11 |{M AUG [2187243 1110010 |G GGA 1101011
amber UAG (262243 1001110 |C UGC [001001|1 Auc |217243 110001 |G GGC |10 1001
ochre UAA 27243 {00 1111 [C UGU (0010001 AuU |[216243 |110000|G GGU 101000
L CUU |547243 {01 0000 |R CGU (011000 |E GAA [189243 (101111 |S AGU 1111000
L CcuC |557243*101 0001 |R CGC (011001 |E GAG [1887243*|101110 (S AGC 1111001
L CUG |56/243 101 0010 |R CGA |011011|D GAC [1877243 101101 [R 4G4 |111011
L CUA |[577243 {01 0011 [R CGG |07 1010|D GAu [1862243 [101100|R AGG |111010
P CCU [607243 1010100 |Q CAG |011110|G GGA |[183243 (101011 |K A44G 111110
P Cccc |617243+101 0101 (2 c44 l011111|G GGG [182243*[101010 |K 444 111111
P CCG |627243 1010110 |H CAC {01 1101|G GGC |[181/2243 101001 |N 44C 111101
P ccA [637243 1010111 (H CAU {01 1100|G GGU |{180/243 1101000 |N 44U 1111100
R cGu |72243 [011000|P  CCU [010100|A Gca [171243 1100111 |7 ACU |11 0100
R cGc |73r43*[o11001 [P  CCC |010101|A GCG [170243*{100110 |7 ACC |110101
R CGG |742243 {011010|P cca lo10111|A ceec [169243 1100101 |F ACA 1110111
R CGA |[75743 1011011 ]|° CCG |010110|A Gcu [168243 1100100 |T ACG 1110110
H CAU |78/243 1011100 (L CUG {010010|V Gua |165243 [100011 (/ AUG 110010
H cAC |797243*|1011101 |L CUA {010011|V GUG |164/243*1100010 (M AUA 1110011
Q CAG 80243 {011110]L CUC |010001|V Guc |163/243 1100001 |/ AUC 110001
Q CaA [81243 [011111]L _ CUU 010000V _Guu [162243 [100000 |/ AUU 110000

*Corresponding positions of the Wall's terminating decimals in the Cantor set.

3/40, 1/10, 9/40, 1/4, 3/10, 13/40, 27/40, 7/10, 3/4, 31/40, 9/10, 37/40 and 39/40 respectively.
aa = amino acids; U=T.

% Values denote positions 1/40,




Table 2. Rules for the permutation of classic genetic code (Table 3) by the 4 nucleotide families of
the first two bases. The algorithm defines: (a) positions of the closest amino acids and (b) places of
all amino acid and stop codons in Siemion's one-step mutation ring." Figure 1 presents more details

on the binary notation and paths of the circular algorithm.

a.
Base 00 01 11 10
dist2nd> | U C A G
0w U C U G A
o1 C U G A C
1 A G A C U
10 G A C U G
b.
2nd > U 2> C 2> A 2—> G
1st 3rd H |3 Wi3z- W i3>
!l cl|l>c6Avuc |U|CUAG|G|[GAUC|IA|CUAG
1 Ul> CUAG |G |GAUC|A|CUAG|C [GATC
lel->6Auc |A|CUAG|C|GAUC|U |CUAG
1 A|l>CUAG |C |GAUC|U|CUAG |G |GAUC




Table 3. Classic table of the genetic code.
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Table 4. Siemion's one-step mutation ring of the genetic code. Horizontal bars separate three periods
of the code to A, C and U family. Italics denote G family codons which are distributed in different

periods (third base: Y = pyrimidine, R = purine).
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Table 5. Horseshoe map representations of 2 binary triplets (or 2 octal numbers, Table 6) extract
classic genetic code pattern (Table 3) and define codon mappping based on the unit square (Figure

1) transformation.

Base position | 1st Ist Ist Ist Ist Ist Ist Ist | Base position
Uu C .100 S A T P H N D Y A U
c C .o1}| S A T P H N D Y A C
A C 111} S A T P Q K E ochre* A A
G C .110 S A T P Q K E amber* 4 G
G U .00 L A\’ M=+ L R R G w G G
A U .01l L \% I L R R G opal* G 4
C U .001 F \% I L R S G C G C
U U .000| F \' I L R S G C G U

3rd/2nd 000. 100. 110. | 010. 011. 111 101. 001. 2nd/ 3rd

N1 U |G» | 4> | Co» | «C |ed |G |«U | N

*stop codons ‘

**start
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SUMMARY

Cathepsin D, a protease with the capability of degrading matrix proteins, is implicated in the
process of breast and colorectal cancer invasion and metastasis. Biochemical studies in
laryngeal cancer have shown a potential prognostic significance of cathepsin D content
determination. We studied immunohistochemical positivity of cathepsin D in tumor epithelium
and stroma of 61 surgical specimens of squamous cell laryngéal cancer. Immunohistochemical
reaction was quantitatively assessed using a PC-baséd image analysis system SFORM-VAMS.
The results were correlated to clinical and morphological parameters and survival
Immunohistochemical positivity was noted in neoplastic cells and tumor stroma. Significant
prognostic value for cathepsin D was established separately for epithelial tumor component
and tumor stroma using log-rank test, the Cox proportional hazards regression model and
C4.5 machine learning system. In all groups, patients above the median cathepsin D staining
showed significantly shorter survival time. C4.5 machine learning system extracted cut-off
values for the decision tree that defines the probabilities of patients survival and death with
high sensitivity (92.8% alive, 73.6% dead), 100% specificity and 86.9% accuracy. This makes
immunohistochémical cathepsin D estimation an independent prognostic parameter in

laryngeal carcinomas within a 5-year period from the time of tumor surgery.

Key words: Laryngeal carcinoma, Immunohistochemistry, Cathepsin D, prognosis, Data

structure, Machine learning, C4.5 classifier




INTRODUCTION

Cathepsin D is a lysosomal acidic protease’ thought to be closely associated with tumor
invasion or metastasis due to its capability of degrading extracellular matrix>. In
histopathological and clinical studies, overexpression of cathepsin D was connected with
aggressive tumor behaviour in different neoplastic diseases>*’. Immunochemically the
presence of cathepsin D was demonstrated in normal laryngeal mucosa and in primary
laryngeal squamous cell carcinomas (SCC)®. Recently, a study using radioimmunoasay
correlated high cathepsin D content with a poor prognosis, independent of lymph node
status’. Immunohistochemically cathepsin D was demonstrated in neoplastic and normal
laryngeal mucosal cells as well as in stromal macrophages®. Aim of our study was to correlate
immunohistochemical expression of Cathepsin D to clinical and morphological parameters as
well as survival in a laryngeal SCC. We compared the analysis of the results by means of
standard log-rank test and Cox proportional hazards regression model to the evaluation of the
results by means of C4.5 machine learning system that extracts the decision tree for the

classification of the patients survival.

MATERIAL AND METHODS

Patients
We investigated 61 consecutive cases of previously untreated laryngeal SCC patients (males
and smokers), without detectable distant metastases, randomly selected from our archives.

Figure 1 and 2 illustrate data concerning TNM stages ® and histopathologic type °.




Immunohistochemistry

The tissue samples were collected from laryngectomy specimens, fixed in 10% buffered
formalin, routinely processed and embedded in paraffin. 3 pm sections were mounted on
silanised slides and stained immunohistochemically with an anti-cathepsin D antibody
(DAKO, Glostrup) using avidin-biotin method (ABC, Vector, Burlingham) according to
manufacturer’s specification (Picture 1, cathepsin D = dark brown staining). All the slides were

stained in one batch, by one technical assistant.

Image analysis

Immunoreactivity was analysed by two of the authors (SS and AV) on a Leitz Diaplan
microscope, using a PC based image analysis system SFORM-VAMS (Zagreb, Croatia;
http://www.vams.com)'’ and a CCD camera (JVC TK 1270). Background lightening was kept
constant and uniform, and a standard blue filter was used. The immunoreactive area was
accessed as percentage of total area analysed (4 fields, objective x25). Immunoreactivity was

analysed separately for epithelial and stromal cells.

Data analysis

Analysed variables were: cathepsin D immunoreactivity (separately for tumor stroma and
tumor epithelium), histopathologic grade (grade I and II together), clinical TNM stage and
survival. Analysis was made using Kaplan-Meier curves and log-rank test'!, the Cox

proportional hazards regression model'? and C4.5 decision tree learning algorithm™ .

C4.5 machine learning program
The program C4.5 is a successor of the basic ID3 deccision tree learning algorithm"™'>'®, C4.5

generates the classifier in the form of decision tree with elements being either leafs or decision




nodes™™® The leaf shows a class and the decision node specifies the test to be implemented on
an attribute value, with one branch and subtree for each possible result of the test®. The
starting node is the root node and a tree is used to predict a case by starting at the root and
moving through the tree until the leaf is encountered>'>"*®_ The C4.5 algorithm presumes
existence of appropriate number of learning examples described by set of attributes and by
classes representing conditions™>>*. Tt searches for the most informative attribute according
to the gain criterion and constructs decision tree'>'>'®, This search is based on Shannon's
measure of information”’ls’”. Pruning is used to reduce the decision tre, i.e. for producing
more comprehensible structure without compromising accuracy on unseen cases 13, 151718 For
any tree, all paths lead to a leaf corresponding to a decision rule that is a logical conjunction of
various tests' 5. If there are multiple paths for a given class, then the paths represent logical

disjunctions™'*""'%. All paths are mutually exclusive 31518 For any new case, one and only

one path in the tree will always have to be satisfied™">",

Sensitivity, specificity and accuracy of the procedures were obtained in a standard way".
Predictivity, i.e. reliability of the classifier predictions was calculated as a ratio of the number

of true predictions to the size of appropriate prediction class (alive or dead)®">"".

RESULTS

Histopathological analysis

Follow up of the patients was from 4 to 108 months with a median of 60 months. 42 patients
were censored (group alive) and 19 completely observed (group dead)”. Cathepsin D
immunoreactivity was histologically observed in normal and neoplastic tissue. In normal

laryngeal mucosa next to tumor, diffuse, weak cytoplasmatic positivity was noted. Scarce




reactivity was also present in stromal macrophages. Neoplastic epithelial cells showed mostly
diffuse positivity ranging from occasional to majority of cells, with a slightly stronger
expression in more dedifferentiated cells. In the tumor stroma abundant immunoreactive cells
(macrophages) were noted. Scarce apical reaction in the stroma of the salivary gland cells was

also noted.

Kaplan-Meier curves and log-rank test

In the tumor epithelium cathepsin reactivity ranged from 0.06% to 5,'63% with a median of
1.35% while in the stroma its range was from 0.62% to 42.02% with a median of 9.86%
(Figure 3, 4.)'. We compared cathepsin D expression with conventional prognostic factors.
There was no significant correlation of cathepsin D immunoreactivity with clinical TNM
stages (Spearman Rank Order Correlation = 0.24 and p < 0.05) as well as with

histopathological grading (Spearman Rank Order correlation = 0.08 and and p < 0.05).

Immunoreactivity for cathepsin D, in both tumor epithelial cells and stroma respectively,
showed strong influence on patient survival (Figures 5, 6). Clinical TNM status (Chi-square =
3.896, df = 3, p = 0.273) and a histological grade (Chi-square = 3.739, df = 2, p = 0.154)

showed no significant influence on patient survival.

The Cox proportional hazards regression model
The Cox proportional hazards regression model suggested that only cathepsin D

immunoreactivity in epithelial cells have statistically significant effect (p < 0.05, Table 1).

C4.5 machine learning system
For the analysis with the C4.5 classifier the patients were divided in two groups (dead or alive

after 60 months, ie. 5 years following the surgical procedure). A decision tree extracted

e




cathepsin D epithelial and stromal tumor cell staining as the most significant for the
classification of the alive or dead groups of patients, i.e. the prognosis. The classification rules
depicted in the Figure 7. can be read as follows:

1. The first rule says that if the value of RED (epithelial cathepsin D) is less then or equal

to 2.33% then a patient belongs to a group alive.

2. If that rule is not satisfied (i.e. RED - epithelial cathepsin D is more than 2.33%) then
the group is alive when BLUE - stromal cathepsin D is above 38%.

3. The group is dead when RED - epithelial cathepsin D is more than 2.33% and BLUE -

stromal cathepsin D equal or less then 38%.

The test showed high sensitivity by accurately predicting 5-year survival following the surgical
procedure in 92.8% of the patients with laryngeal squamous cell carcinoma (Figure 7). The
classifier’s sensitivity in predicting the death due to the tumor progression, within 5-year period
following the surgery, was satisfactory 73.6% (Figure 7). The specificity of the test was 100%
since the decision tree evaluation is made on the tumor»tissue, absent in the normal laryngeal
immunohistochemical sample. Therefore all patients without tumor have a priori negative test
result with respect to specificity evaluation'®. The accuracy of the test was also high (86.9%)
and the reliability of classifier's prediction (predictivity) was 88.6% for the group alive and

82.3% for the group dead (Figure 7).

DISCUSSION
Expression of cathepsin D was analysed in different malignancies such as breast”?**,
melanoma 2, colorectal”, head and neck cancer” as well as in childhood or nervous system

neoplasm 2> Tt was suggested that cathepsin D can play a role in tumor cell proliferation by




growth factor activation or promote tumor invasion and metastasis by activating proteolytic

enzymes .

In laryngeal carcinomas different studies established by immunometric assays a higher
cathepsin D content in tumor tissue samples, as compared with normal laryngeal mucosa®’.
Immunohistochemically strong reactivity was demonstrated for cathepsin D in tumor cells and
in tumor stroma macrophages that infiltrate the tissue. In this context very high stromal
cathepsin D value linked to the patients survival in subgroup of patients (Figure 7), may be due

to the enhanced local immune response to tumor antigens®’.

C4.5 decision tree learning algorithm (Figure 7) was superior to Cox’s model (Table 1),
regarding the analysis of data structure, since it extracted cut-off values of both epithelial and
stromal cathepsin D content relevant for the survival. Similarly to C4.5, log-rank test showed
the statistical significance of epithelial and stromal cathepsin D content for patients survival
(Figures 5, 6), but failed to explain good prognosis for the subgroup of the patients with

extremely high stromal cathepsin D content.

Stromal cathepsin D values of < 38%, linked to the tumor progression (Figure 7) probably
reflect enhanced activity of protease concerning the metastasis™” and less pronounced immune
response. It is worth mentioning that, with respect to C4.5 based classification, the cut-off
prognostic value of stromal cathepsin D is the descendant node of the best predicting attribite'®
(i.e. epithelial tumor cathepsin D) which represents the most informative and root node of the
tree'>'. Best attribute defining of tumor epithelial cathepsin D by means of C4.5 classifier is in

agreement with the fact that laryngeal sqamous cell carcinoma is an epithelial neoplasm.




Prognostic significance was recently assumed for radiometrically measured cathepsin D
levels*” however, to our knowledge this is the first immunohistochemical study
demonstrating strong prognostic significance of cathepsin D in laryngeal cancer. Besides being
highly prognostic, this type of immunochemical test is relatively cheap and easy to perform

which makes the combination of quantitative immunohistochemical analysis of cathepsin D

and C4.5 based data classification a potent prognostic tool in laryngeal cancer patients.

Although the surgical treatment is condicio sine qua non in the therapy of laryngéal squamous
cells carcinoma it seems that cathepsin D content in histopathology samples of the tumor cells
represents an important predictive factor for tumor recidives and aggressive behaviour. In this
study the data analysis was not influenced by other therapeutic procedures (e.g. chemotherapy
or radiotherapy) due to the fact that surgery is a primary therapeutic procedure for the type
and stage of laryngeal neoplasm we observed (Figure 1). It is worth mentioning that all of our

patients were males and smokers.

In our study expression and localisation of cathepsin D immunoreactiyity correlated with data
obtained by others for laryngeal neoplasms 2128 Trom our results, cathepsin D seems to be an
independent prognostic marker in primary laryngeal carcinomas, which confirms the
hypothesis of Marsigliante ef al.”*. Decision tree extracted by means of C4.5 classifier was
shown to be a valuable tool to define highly sensitive, specific, accurate and predictive cut-off
values for immunohistochemical cathepsin D data. It remains an open question if this method
3.5,21,29-31

of analysis could be applied to other tumors (e.g. breast,colorectal and gactric cancer)

with established link between aggressive neoplastic behaviour and cathepsin D content.
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Picture 1. Cathepsin D positivity in tumor cells. (x40)




Fig 1. Distribution of patients by TNM classification
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Fig 5. Survival analysis for cathepsin D positive area (%)
in the epithelial component of tumor ( Kaplan - Meier )
o Complete response + Censored observations

1.0
09

08

0,7
Log - Rank test

p = 0.0017

06

05

04

03 — Cathepsine D> 1.73 %

""""" Cathepsine D < 1.73 %

0,2

Cumulative proportion of survival

0.1

0,0
0 20 40 60 80 100 120

Time ( months )




Fig 6. Survival analysis for cathepsin D positive area (%)
in tumor stroma ( Kaplan - Meier )
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Fig 7. Decision tree obtained by C4.5 machine learning system

SENSITIVITY (alive) = 92.8 % = 39/42
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Table 1. Cox proportinal hazard risk model for clinical stage, cathepsin D content in epithelial

and stromal component of tumor and histopathological gradus

Cox model Chi-square = 18.3673 df=4 p=0.0015
Variables Estimate Standard error t-value two-sided p value
Clinical stage 0.43 0.28 1.51 0.13
Cathepsin D (epithel) 0.83 0.32 _ 2.30 0.009
Cathepsin D (stroma) -0.04 0.05 0.96 0.46

Histopathological grade 0.16 0.29 0.54 0.59
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SUMMARY

An imbalance between urinary promoting and inhibiting factors has been suggested as mbre important
in urinary stone formation. than a disturbance of any single substance. To investigate the value of
promoter/inhibitor ratios fot estimation of the risk of urolithiasis, urinary citrate/calcium,
magnesium/calcium oxalate and oxalate/citratexglycosaminoglycans ratios were determined in 30
children with urolithiasis, 36 children with isolated hematuria, and 15 healthy control children. The
cut-off points between normal children and children with urolithiasis, accuracy, specificity and
sensitivity for each ratio Were determined and compared with those of the 24h-urine calcium and
oxalate excretion and urine saturation calculafed with the computer program EQUIL2. The neural
network application ( aiNET Artificial Neural Network, version 1.25) was used for the determination
of the cut-off points for the classification of a normal children and urolithiasis group. The best test
for differentiating stone formers from non-stone formers proved the aiNET determined cut-off values
of oxalate/citratex glycosanﬁnog]ycans ratio. The method showed 97.78 %4accuracy, 100% sensitivity
and 93.33 % specificity. TwQ cut-off points between normal and urolithiasis group§ were found
showing that the children with urolithiasis had the rafio values either above 34.00 or less than 10.16.
Increased oxalate excretion was linked to the first cut-off value (34.00) and decreased

glycosaminoglycans excretion was typical of the second cut-off value (10.16).

Key words: urinary stones, promoter/inhibitor ratios, risk of urolithiasis, neuronal network,

classification




INTRODUCTION

Extensive examination of number of urinary promoting and inhibiting factors was undertaken over
years to investigate risk for stone formation. It has been shown that no single promoter or inhibitor
can discriminate clearly enough any particular individual as healthy or sick. Combination of factors
seems to provide better separation of stone formers from normal subjects. Several ratios between
promoting and inhibiting factors, such as calcium x oxalate/creatinine x magnesium', calcium/citrate?,

magnesium/calciumxoxalate®, oxalate/calcium®, citrate/calcium °, oxalate/citratexglycosaminglycans®,

7-14
’

as well as more sophisticated methods that take into account the number of urinary compnents
were used to detect the imbalance between the promoting and inhibiting factors leading to stone
formation. We examined 11 single urinary factors potentially promoting or inhibiting crystallization
and urine saturation with computer program EQUIL 2 in children with isolated hematuria and overt
urolithiasis and compared the findings with the findings of normal healthy children'®. In our previous
report urine saturation was found as the best parameter for the estimation of the relative risk of
urolithiasis. However, logistic regression failed correctly to classify 14.59% of the group members"’.

The aim of the present study was to evaluate the value of promoter/inhibitor ratios for
estimation of the risk of urolithiasis. Those tests are simpler, easier and cheaper for routine clinical
practice than EQUIL2. Citrate/calcium, magnesium/calciumxoxalate and oxalate/citratex
glycosaminoglycans ratios were chosen for this purpose because all of them take into account the
major urinary stone promoting and inhibiting factors. Neuronal networks analysis by means of aiNET
Artificial Neural Network (version 1.25) was used to determine the cut-off points between normal

and urolithiasis groups. Accuracy, specificity and sensitivity were calculated for each of these ratios
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and compared with those of the 24-h urine calcium and oxalate excretion and urine saturation.

PATIENTS AND METHODS

Patients. Thirty children with urolithiasis and 36 children with isolated hematuria were
investigated. A group of 15 healthy sex and age matched children without ahy nephrourological
disease or pathological condition that might influence urine composition served as controls.

In children with hematuria, glomerular diseases, urinary infectivon, urological anomalies and
coagulopathy were excluded before entering the study. If a checkup of serum and urine electrolytes
revealed hypercalciuria, the known causes of hypercalciuria (renél tubular acidosis, hypercalcemic
- conditions) were excluded.

In children with urolithiasis ultrasonography and/or urography established the diagnosis.
Cystinuria and hyperuricosuria were excluded.

The children were enrolled in the study with informed parental consent.

Urine sampling and analysis. From each child, 24-h urine collections performed on two consecutive
days and one urine sample collected from 8 to 10 a.m. on the third day were obtained for analysis.
The 24-h urine of the first day served for measuring creatinine, calcium, sodium, potassium, oxalate,
phosphate, magnesium, citrate and sulphate. It was collected in a wide-mouthed plastic bottle
containing 10 ml 6N hydrochloric acid as preservative. The 24-h urine of the second day was
collected in the same way but without the addition of hydrochloric acid in the bottle. It served for
measuring chloride, urate, GAGs and creatinine. The 2-hour urine collected on the third day served

for ammonium and creatinine measuring. In this sample 500 mg di-potassium-oxalate was added
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immediately after voiding to prevent ammonium decomposition.

pH of urine was measured with indicator sticks (Boehringer Mannheim, Germany). Oxalate,
citrate and sulphate were measured using a Dionex Series 4000i gradient ion chromatography system
(Dionex Co, Sunnyvale, CA, USA)S. GAGS were measured by carbazole method 7, ammonium by
glutamate dehydrogenase (Da Fonseca-Wollheim)®* and magnesium by atomic absorption
spectrophotometry". The following analyses were done on Olympus AU 800 Analyser: creatinine by
standard kinetic Jaffé procedure®, sodium, potassium and chloride by ion selective electrodes,
calcium by the cresolphthalein-complexon method?, phosphate by molybdate method® and uric acid
by uricase method®.

From the values of urinary 24-h volume, pH of urine, calcium, sodium, potassium, chloride,
magnesium, phosphate, sulphate, ammonium, urate, oxalate, citrate and creatinine (mmol/L), the
urinary calcium oxalate saturation was calculated by the computer program EQUIL 2'“%. Also, 24-h
urinary excretion expressed as a ratio to the creatinine was calculated for each of the measured
urinary components.

Data analysis. Data were presented as medians with minimum and maximum values. Cut-off
values between normal children and children with urolithiasis were determined using a neuronal
network application (aiNET Artificial Neural Network Version 1.24, Celje, Slovenia) 2%,
Artificial neural network aiNET is based on a self-organising system, called neural network-like
system, and it is very similar to the Kohonen's self organisation process®. The algorithms used by
aiNET do not require any learning phase and the answers about prediction are obtained almost
immediately* . When the data is chaotic and there is no possible solution aiNET will suggest a data

problem** %,
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Accuracy, specificity and sensitivity, as well as 95% confidence interval for determined cut-off were

calculated.
RESULTS

Table 1. shows median (minimum - maximum) values of the 24-h urinary excretion of calcium
and oxalate, urine saturation, citrate/calcium, magnesium/calcium=oxalate and oxalate/citratex
gycosaminoglycans ratios. Cut-off points between normal children and children with urolithiasis were
possible to determine using all variables except a magnesium/calciumxoxalate ratio, which data were
too dispersed for such discrimination (Table 2). Children with urolithiasis had urine saturation,
calcium/creatinine, oxalate/creatinine and citrate/calcium above 4.70, 0.20, 0.48 and 1.38
respectively. For oxalate/citratexglycosaminoglycans ratio two cut-off points were found. Children
with urolithiasis had the ratio values either above 34.80 or less than 10.16. The most accurate method
for discrimination normal from sick children was oxalate/citratexglycosaminoglycans ratio that
showed as 100% sensitive and highly specific with only 6.67% false positive results. Than follow
citrate/calcium ratio and urine saturation, the former with better sensitivity and the later with the
better specificity. All children with the urolithiasis had at least 3. of 5 examined variables in the range
of the pathological values and in 19 out of 30 (63.3%) children all variables showed pathological
values (Table 3). On contrary all normal children except 1, had no more fhan 2 variables in the range
of the pathological values. In children with hematuria results were dispersed, although the tendency

of having higher number of pathological variables was noticed.




DISCUSSION

It seems reasonable to consider urolithiasis as multifactorial disorder with risk of stone
formation dependant upon a disturbance in the balance of promoting and inhibiting factors. In our
previous study we have shown that urine saturation estimates the relative risk of urolithiasis better

than any single urinary constituent'®

. However, the determination of urine saturation may be
inconvenient for routine clinical practice being time consuming and expensive. Therefore, we tried
to find an easier parameter with high sensitivity to discriminate stone formers from healthy children.
Saturation can also be expressed in terms of ratios between urine concentration of 2 or 3 substances
involved in lithogenesis. Among the ratios examined in this study the best proved oxalate/citratex
glycésaminoglycans. Baggio et al. first suggested this ratio as simple method for detection of the
imbalance between promoting and inhibiting factors and found abnormally high ratio values in
children with idiopathic urolithiasis®. The ratio can differentiate more than 80% of stone formers from
non-stone formers. In the present study not only very high, but also very low values of the ratio were
found in children with urolithiasis in comparison with normal children. The ratio values above upper
limit of normal belonged to patients with increased oxalate excretion, while the ratio values under
lower limit of normal reflected relatively decreased glycosaminoglycans excretion. In our previous

15

study” standard statistical methods (two-way analysis of variance and Tukey HSD test with
correction for unequal N) could not detect influence of glycosaminoglycans on differentiation
between normal children and urolithiasis group. The result of neural network classification (Table 2)

based on the artificial intelligence method of data analysis implies that decreased glycosaminoglycans

values may influence the stone formation in a sub-population of stone-formers. The use of two cut-
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off points made it possible to increase accuracy of the oxalate/citratex glycosaminoglycans ratio in
differentiation between stone formers and normal children from 80% to 97.78%. Only one healthy
child had pathologically high ratio value due to unexpectedly high glycosaminoglycans excretion, the
finding fhat is difficult to interpret.

The citrate/calcium ratio has proved as very good discriminator between stone formers from
normal children, too. Although of somewhat lesser accuracy and specificity than oxalate/citratex
glycosaminoglycans ratio (Table 2), a citrate/calcium‘ ratio has advantage of easy performing in
clinical practice.

The study showed once more that the disturbance of more than one of substances involved
in lithogenesis must be present for stone formation. All children with urolithiasis had at least 3
pathological parameters, while all but 1 normal child has no more than 2 pathological parameters.

The neural network analysis of the laboratory tests related to the important and common

medical problem of urolithiasis proved to be of potential clinical value.
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Table 1. Urinary Promoters and Inhibitors of Crystallization *

normal children hematuria urolithiasis

parameters md min max md min max md min max
urine saturation 191 0.76 3.48 432 0.74 16.29 19.59 0.72 25.20
calcium/creatinine (mmol/mmol) 0.17 0.08 0.33 0.22 0.11 0.79 0.30 0.08 0.56
oxalate/creatinine (mmol/mol) 46.00 19.00 76.00 51.00 8.00 111.00 | 75.00 | 20.00 | 111.00
citrat/calcium ratio (mmol/mmol) 1.81 0.48 3.59 1.33 031 774 0.71 0.17 138
magnesium/calcium x oxalate ratio 1.05 0.13 3.31 0.80 0.09 4.15 0.92 0.06 3.44
(mmol)
oxalate/citrate x glycosaminoglycans 19.09 7.64 34.80 43.17 7.42 257.85 | 195.49 7.72 631.77
ratio ( mmol x 10%)

* Md, median; min, minimum; max, maximum.
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Table 2. Validity indexes for Examined Promoters and Inhibitors of Urolithiasis

Cut-off value
parameters Normal Urolithiasis Accuracy Specificity Sensitivity
children

urine saturation <4.70 2 4.70 88.89% 93.33% '86.67%

(75.15-95.84%) (71.27-99.67%) (70.90-95.62%)
calcium/creatinine <0.20 2020 82.22% 73.33% 86.67%
(mmol/mmol) (67.42-91.49%) (47.47-90.90%) (70.90-95.62%)
oxalate/creatinine < 48.00 2 48.00 75.56% . 5333% 86.67%
(mmol/mol) (60.14-86-61%) (26.68-76.80%) (70.90-95.62%)
citrat/calcium ratio >1.38 < 1.38 91.11% 73.33% 100%
(mmol/mmol) (77.87-97.11%) (47.47-90.90%) (50.05- 100%)
magnesium/calcium x oxalate ratio a a a a a
( mmol)
oxalate/citrate x glycosaminoglycans 10.16-34.80 <10.16 or 97.78% 93.33% 100%
ratio (.mmol x 10%) >34.80 (86.77-99.88%) (71.27-99.67%) (90.05-100%)

4

a - not possible to determine




Table 3. Number of positive risk factors in normal, hematuria and urolithiasis groups according to

cut-off values

14

Number of Positive Risk Factors

Groups 0 1 2 3 4 5
Normal children 5 4 S 1 0 0
(33.33%) (26.67%) (33.33%) (6.67%)
Hematuria 1 5 4 9 12 5
(2.78%) (13.89%) (11.11%) (25.00%) (33.33%) (13.89%)
Urolithiasis 0 0 0 1 10 19
(3.33%) (33.33%) (63.33%)
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Abstract

The algebra of the s- and r-vectors is an adequate formal tool to describe chemical objects in an
abstract way. Compounds as well as reactions are represemé:d including all constitutional and
configurational aspects. The stercochemistry of simple organic molecules as well as of metal-
organic compounds may be described in a unique way. lonic bonds, covalent bonds, aromatics
and electron deficiency compounds can be formally described without loss of information.
Even reaction types and the flow of electrons can be described using this algebra. The biggest
benefit of this approach is its intrinsic group theoretical structure. This does not bother the
chemist for its use but allows the computer to handle and structure huge amounts of chemical
data. This is especially important for combinatorial chemistry.

Usually, classical chemical syntheses from n starting materials require sequences of at least
n-1 preparation steps including separation and purification of the intermediates. A perfect
alternative for rapid syntheses of large varieties of agrochemically and pharmaceutically
relevant products are one-pot syntheses by multicomponent reactions (MCR). Four to seven
different types of participunts (i. e. different isocyanides, amines, etc.) mixed in a reaction
vessel undergo the transformation to one molecule. Using more than one representative of each
type of starting materials, all possible combinations will lead to a molecular library of products
formed according to the given reaction scheme. This is a preposition for finding compounds
with desired properties.

The main efforts are to develop procédures that lead to the optimal compound with specific
properties, i. e. methods how the opumal compound with best effects and least side effects can

be found.

The design of library syntheses and the handling of the results require adequate mathematics
and computer tools. For designing molecular libraries containing the sought compound one
needs other information than for classical synthesis planning. How many different compounds
will the library contain? How similar or different are these? Will the compounds show
functional groups in similar spatial arrangements? The basic problem is the management of the
flood of information which is generated. The combinatorial product space based on MCR
approaches contains by magnitude more structures than all existing structure databases
together. Using a combination of two Ugi-four-component reactions (involving di-carboxylic
acids) the available product space will cover 10" different structures from 500 different
starting materials. Such vast numbers of data can not be handled by usual database systems. At
present the automated syntheses of these compounds would take thousands of years.

Data may not be assigned to single structures but to sets of structures, determined by the
starting compounds and the resulting reactions. Instead of comparing single structures one
must compare collections without having the individual elements. Individuals can not be
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Fig. 2: Two Uyi-4CR: one with a carboxylic acid. the other with water as an acid component

There are some requirements so that multicomponent chemistry works for combinatorial
synthesis. Beside the typical essentials like yields and selectivity, the MCR must operate for a
wide variety of representatives of the educt classes, i. e. the MCR must be generic, i. . most of
the starting materials will react according to the given reaction scheme. This is usually given, if
the single reaction steps follow a certain procedure: Some of the reaction steps between
starting materials and intermediates equilibrate, while the final steps, which proceed towards
the desired product. are irreversible (Fig. 3). This type is called a type-II-MCR. Usually
quantitative yields and an immensely large variability of starting materials and products
result.[7]

+b " +d

a —~ a-b -~ a-b: —_— a-b -d
Fig. 3: Type-lI-MCR have a final quasi irreversible step

All the side-reactions must also be reversible. In the instance of the Ugi-4CR this is the case
for the Hellmann-Opitz-3CR but not for the Passerini-3CR. The latter must be excluded by
optimizing the reaction conditions towards the Ugi-4CR which in this case is easy to achieve
by the solvent. :

1.2 MCR in Combinatorial Practice

In 1961, when Ugi suggested to use MCR in a combinatorial way to produce molecular
libraries[6]. automated techniques for synthesis or screening were not developed yet. Then the
paradigm in preparative organic chemistry was the syntheses of pure compounds. In the early
nineties this paradigm shifted as there emerged a need for more compounds to match the
improved and accelerated screening capabilities.

The combinatorial multicomponent chemistry gives a well-known degree of diversity and a
high number of compounds.[4](8] The size of the molecular space M made up by a nCR is
defined by the size of the n educt classes ny, ns. ..., n,:

8=1]n o (1)

In fact the Ugi-4CR produces a stereo-centre at the carbonyl-C if non-symmetric aldehydes
(formaldehyde) or ketones are used. Considering the available starting materuls (mostly found
in the catalogues of leading chemical manufacturers) there are about 10'* different
combinations. This set of combinations is called the Ugi-4CR product space. Any molecular
Ugi-4CR library is a subset of this product space.
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obtained by selection from an intractable set but by selective generation. Such highly efficient
methods require a cleverly thought-out representation of the chemical objects compound and
reaction, as it is given by the algebra of the s- and r-vectors.

Originally designed for describing the stereochemistry of chemical reactions via permutational
isomerism, the algebra of the s- and r-vectors is useful to mapage molecular libraries as well. It
covers all combinatorial, constitutional, stereochemical and topological aspects of
combinatorial chemistry on a profound mathematical basis. The little mathematics used,
mostly group theory, will be explained and illustrated with chemical examples.

1 Principles of MCR-Based Combinatorial Chemistry

Combinatorial chemistry[1}{2]{3] is a rather simple technique to reach many different
compounds within a short period of time. Basically there are two different approaches: One
approach is the construction of chains of molecules with building blocks, usually all of the
same kind, for example peptides out of amino acids. This must be done step-wise to get well-
defined sequences. Multicomponent reactions (MCR), however, differ from this principle due
to the construction plan that is inherent to them.[4] The sequence is always determined by the
reaction scheme. No sophisticated procedures are needed. All combinations of the starting
materials according to the reaction scheme are possible (Fig. 1)The set of combinations is

called a molecular library.
®:-0:V:m - eovn

¢:0-V-m \——"‘""-’"

0+0+V+0O
\

" GOSNAO

Fig. I: Scheme of the combinatorial construction principle of a molecular library using a four-component reaction

Using combinatorial methods also means that you obtain a lot of information within a short -
period of time. In order to reduce the costs for information management computers should be

helpful.

1.1 Multicomponent Reactions for Combinatorial Chemistry

From the methodological point of view MCR are the kind of chemistry that is best fitting for
combinatorial synthesis: MCR may be carried out on solid or in liquid phase by so-called
“Eintopf-Reaktionen” (one-pot reactions). In the latter approach, the starting materials are
simply mixed and the program for combining the starting materials is given by the chemistry
of the MCR. For example, the Ugi-four-component-reaction (Ugi-4CR) (Fig. 2) is combining
an amine, an aldehyde (or a ketone), a carboxylic acid (or other proton donors) and an
isocyanide.[5](6] These are called the educt classes.
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There are some requirements so that multicomponent chemistry works for combinatorial
synthesis. Beside the typical essentials like yields and selectivity, the MCR must operate for a
wide variety of representatives of the educt classes, i. e. the MCR must be generic, i. e. most of
the starting materials will react according to the given reaction scheme. This is usually given, if
the single reaction steps follow a certain procedure: Some of the reaction steps between
starting materials and intermediates equilibrate, while the final steps, which proceed towards
the desired product, are irreversible (Fig. 3). This type is called a type-II-MCR. Usually
quantitative yields and an immensely large variability of starting materials and products
result.[7]

+b + d

a e a-b - — a-b = —— a-b -d
Fig. 3: Type-1[-MCR have a final quasi irreversible step

All the side-reactions must also be reversible. In the instance of the Ugi-4CR this is the case
for the Hellmann-Opitz-3CR but not for the Passerini-3CR. The latter must be excluded by
optimizing the reaction conditions towards the Ugi-4CR which in this case is easy to achieve
by the solvent.

1.2 MCR in Combinatorial Practice

In 1961. when Ugi suggested to use MCR in a combinatorial way to produce molecular
libraries[6]. automated techniques for synthesis or screening were not developed yet. Then the
paradigm in preparative organic chemistry was the syntheses of pure compounds. In the early
nineties this paradigm shifted as there emerged a need for more compounds to match the
improved and accelerated screening capabilities.

The combinatorial multicomponent chemistry gives a well-known degree of diversity and a
high number of compounds.[+][8] The size of the molecular space M made up by a nCR is
defined by the size of the n educt classes n, ny, ..., n,;:

|Bl=ﬁni | )

In fact the Ugi-4CR produces a stereo-centre at the carbonyl-C if non-symmetric aldehydes
(formaldchyde) or ketones are used. Considering the available starting materials (mostly found
in the catalogues of leading chemical manufacturers) there are about 10! different
combinations. This set of combinations is called the Ugi-4CR product space. Any molecular
Ugi-4CR library is a subset of this product space.
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A very suitable device for the automated synthesis of MCR libraries are micro titre plates
(Fig. 4). These are available in different densities up to some 3000 wells per plate. Figure 4
shows how a 8x12 micro titre plate can be used for the synthesis of a 96-library by mixing 4
aldehydes, 3 amines. 4 carboxylic acids and 2 isocyanides. Each well contains an unique
mixture from which an Ugi-4CR product may evolve. This is defined by a 2-dimensional
location. The mixture (A2, Bl, Cl, D2) will be positioned at (4, 5).

(4.5)=(A2,81,C1.02) Al A2 A3 Ad
B2

Fig. 4: Distribution of I3 different starting materials on a micro titre plate in order to produce a 96-library.

Figure S shows an array of micro titre plates necessary for the synthesis of a 960°000-library
emerging from 40 aldchydes, 30 amines, 40 carboxylic acids and 20 isocyanides. This is still
far away from the possibilities of the Ugi-4CR.

40 x 30 = 1200

IREERET RS doiviiiiiidiiast L. ST IELS LT,

== 40x20

Fig. 5: An array of micro titre plates necessary tor a 9607000 library.

To use the high density titre plates is not the solution of the problem because this reduces the

R . . . .
problem only by a factor of 10~. To give an impression of the size of the problem: Assume each
well will be filled with 1ug starting materials. Further assume that —at the present state of the
art— an automaton fills each titre plate within | second. Then. the complete Ugi-4CR product.
space with 10'? different combinations will consume 100 tons of starting materials within
33'000 years.
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1.3 Need for Computers

To find the best matching compound concerning sought properties out of the available product
spaces is an optimization problem, because there is no algorithm mapping properties onto a
(set of) compound(s). For the designer of a molecular library all intractability of this problem
results out of the size of the product spaces. No matter if selecting starting materials
corresponding with a given specification, or specifying a sublibrary, or optimizing a lead, one
always has to face the enormous molecular space one works within. It is not possible to
produce the whole molecular space and then select the interesting structures. No computer
could store nor investigate that much information. The information must be generated
selectively. Answers must be found on the level of the starting compounds and construction
principles that are given by the chosen multicomponent chemistry.

Effective and efficient representations of the chemical objects are needed for computer support.
As so often in chemistry, group theory helps a lot.

)

1.4 Formal Basis

There is little mathematics needed for a formal representation of combinatorial chemistry. The
complete mathematical discourse on this topic is given in the mentioned literature. This
chapter gives all necessary information without proofs but explains the most important
mathematical correlations. '

1.4.1 Permutations

A permutation ® = (I 1, [, ... [) is a mapping from the set L (!, [, . ... [;} onto L.

lL—L )
nt bijective

according to & (Ip) = lp, mlp) =1, ..., ® () = I,. All further elements are mapped to
themselves. This mapping may also be noted as a vector

Lo e ;
=L )

< o

A composition of two permutations fyet; = Rta%t; applies first m; and then 1y, If two
permutations are disjoint (that means they have no elements in common) the sequence of
application has no effect. i. e. (1 5)(3 4) = (3 4)(1 5). Also the element a cycle starts with
makes no difference. i. e. (1 5 6) = (5 6 1). but naturally the sequence within the cycle does,
i.e.(156)=(l65)! Non-disjoint permutations can be “normalized” so that the cycles
become disjoint, i. e. (1 5)(1 5 6) can be transformed to (5 6).

1.4.2 Automorphisms and Groups for Structuring Chemical Information

A group G =(L, -)is a pair of a set L and an operation - in L with the following properties:
(1) Closure: For any two elements o. B € L, the product o-B is also element of L;
(2) Associativity: For all elements . B, ye L, we have a-(B-y) = (o-B)-v:
(3) Existence of an identity element: There exists an element e € L such that for all ele-
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ments a € Lholds e =€ =0,
(4) Existence of inverse elements: For any element o € L there exists an element o”! such
thataa™' =o o =¢
This paper is exclusively talking about finite groups, i. . groups with a finite set of elements.

Each U = (M, -), MCL, is called a subgroup of G, written U<G, if U is closed concerning the
operation -, Groups (and subgroups) are usually defined by a set of generarors S. All possible
combinations of elements of set S will give the group <5>.

For example, the set of permutations L = {(), (1 2 3), (1 32), (1 2)(4 5), (1 3)(4 5), (2 3)(4 5)}
with the composition of permutations o forms a group G = (L, o). The set

M ={(), (123),(132)} forms a subgroup U = (M, ©)<G. The set § = {(1 2), (123 4 5)}
generates the group 5 that covers all 120 possible permutations of up to five elements. G as
well as U are subgroups of ;.

The group-theoretic notion coset plays an important role. A coset space of G is generated by a
subgroup U<G. For any o€ G the set a-U = ol is called a left-coset of U in G. The left-coset
ol can be described as ol = {ye G: o 'ye U}. In section 2 will be shown that each coset
represents exactly one product of a library. The index [G:U] of U in G is the number of distinct
(left-)cosets. All the left-cosets of U in G have the same size. Because the identity element is
member of G, U itself is a left-coset. Therefore all cosets of U in G have the same size as U.
Each ye G belongs to at least one left-coset of U in G and any two left-cosets of U in G are
either identical or disjoint. Therefore G is a disjoint union of all the cosets of U in G. The index
[G:U] is equal to IGI/ IUN. Each coset is uniquely represented by any of its members together
with the subgroup U. A set of one representative per coset is called a travese.

Groups are capable of structuring sets (of molecules) by making up a coset space. In the
example above two permutations define a set of 120, a small subset that generate a group
structures these 120 elements into cosets. This is why group theory is of high value for
structuring big sets. '

This approach has been initiated by Dugundji and Ugi in 1984 and refined by Dietz, Gruber
and Ugi.[11]{12][13]{14] Several kinds of equivalency relations (for example chemical
identity) have been applied to structure chemical information. :

1.4.3 Automorphisms for Molecules and Reactions

Groups based on permutations are called automorphism groups. Automorphism groups are
extremely useful, not only to describe stereochemistry of molecules, but also for constitutional
phenomena, so-called chemical reactions. In 1971 Ugi and Dugundji represented the
constitutional part of chemistry by redistribution of binding electrons formalized as the
algebra of the be- and r-matrices.[15] In 1992 an algebraic model of stereochemistry was
given, involving stereochemistry into chemical reactions and vice versa. Section 3.7 of [16] is
dealing with the fusion of the theory of the chemical identity group with the algebra of the be-
and r-matrices. The result was the algebra of s- and r-vectors.[12]{13]{16][17] s stands for
stereochemical and r for reaction. The derivation of this algebra is also given in Ref. [13]pp9-
11. The algebra of s- and r-vectors is capable of describing structures and reactions regarding
stereochemistry [13], delocalized electron systems and electron deficient compounds [17].

Each atom has located topological positions that function as connection points. A sp3-carbon
possesses typically four topological positions. The positions are called topological but not .
geometric because their geometric location is not known but their neighbourhood is.
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Chemical structures are represented by one-to-one mappings of the topological positions of
(different) atoms. This is isomorphic to permuting a finite set of ligands, but unlike the theory
of the chemical identity group there is no distinction between atoms of the ligands and atoms
of the skeleton any more. Any (set of) molecule(s) is represented by a permutation. Therefore
chemical reactions are simply permutations applied onto permutations.

Fig. 6 shows the constitutional changes of the Ugi-4CR which is represented by the matrix R.
The matrix E represents the starting materials: an aldehyde, an amine, a carboxylic acid and an
isocyanide. The Ugi-product and one molecule of water are represented by the matrix B.

Ra € 0 0 Hlro 8 1 Hlr: ¢ woolsd N ¢

X
-3
f'.':};loxn_!‘l:x;z;’,':oonﬂ

Ra C 0 0 Mlmo m H mlac ¢ wiolma & ¢
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(%) LA KAl

Fa € 0 O Hlrs N W e ¢ Hiofas v o
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1 2 1
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Fig. 6: Ugi-4CR represented as be-&r-matrices
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The equation B = R+E is fundamental to the algebra of the be-and r-matrices. The matrices
exclusively have information about the distribution of the binding electrons, whereas the r- and
s-vectors are representations of the topological positions on the atoms (Fig. 7).[12] The first
line is needed as a reference what topological positions are mapped. The s-vector € is defining
the starting materials. p is the Ugi-4CR r-vector. The s-vector B results from the application of
p onto €: B = poe. Fig. 7 shows the Ugi-4CR with the topoldgical positions and two different
notations for the permutations €, p and B: as vectors and as cycles (s. section 1.4.1).

sE!l OR. H H
2, HoH R - e
)& H YN - "/ks * };‘z R SN N ;n‘ * H3* %H
R, 20 Ry H O Rq "I{g ol
a b [+ d e t

[or a2 a3 a4 a5_ o8 a7 o6 sofer bl td oe i < 9

¢'-lm,‘sfuc:-il'_',-.z:;:;:_ujﬂ pﬂlm r.-'._'r:.!.liv?‘[rej“w- N

O P I s S M RN S R B TN

L I D B~ R B L I e I L

s {atm) (3235) (a3a8) (a4aT) (B33 (2t (2¢3F) (9ILé) {<rre) (D) (33:B) (edsT) {(41rd) {2 {3345} (#37)
o= (BE322ad  {47RI:3a7) (AT z2a8) (237705339

Be (3Va: (2285) (3)a8) (e433) (a7} (33155 (a2:%) (9td) (23X} (D€=F) (93 A7) (st ) (S29T) (e4:V) {314y {=Tat)

Fig. 7. The Ugi-4CR noted in terms of s- and r-vectors

Molecules (or ensembles of them) correspond with permutations. Families of permutational
isomers correspond with automorphism groups. The algebra of s- and r-vectors allows to
expand this approach onto sets of “isomeric™ ensembles of molecules.

2 A Precise Representation for Molecular Libraries

As well as automorphism groups are useful for representing families of permutational isomers
in an efficient way, they can represent molecular libraries.[16][ 19] Molecular libraries are used
in combinatorial chemistry for finding and optimizing new drugs. There is a big space of
molecules corresponding with each MCR. Libraries are subsets of this space. In order to
decide whar libraries are most expecting one must use tools that determine these sets.

Due to its size the entire molecular space of an MCR can not be produced as compounds, nor
can it be represented as a list. Group-theory is capable of representing a set of molecules by a
subset (a so-called set of generators) and a construction principle. This saves memory and
reduces the exponential complexity to quadratic complexity, which is important for both
computers and the designer of molecular libraries.

Notions of group theory have chemical interpretations. For example a group may define an
equivalence relation. That means the members of the group are equivalent concerning a
defined property, for example they belong to the same aromatic system. Subgroups of this
group may refine the equivalence relation. As for example the subgroup given by all
permutations applied onto molecular parts with a maximum mass of 150 daltons.

2.1 Molecular Libraries represented by Notions of Group Theory

Each n-CR leads to a specific backbone with n topological sites. At these sites different ligands
will be positioned by different starting materials. Each kind of starting material has its well-
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defined site due to the “deterministic™ reaction mechanisms. The amines in the Ugi-4CR

(Fig. 2) will always define the same part of the backbone, etc. By transposing the subgraph
defined by the amine with another amine you get a different “permutational isomer” which is a
member of the library. The only difference between families of permutational isomers and
molecular libraries is that in the latter are permutations applied upon extra-molecular parts.

Fig. 7 shows the Ugi-4CR in terms of s- and r-vectors. The Ugi-4CR (as well as any other 4CR
of type II) can be simplified to the scheme given in Fig. 3: The result of the Ugi-4CR of educts
a, b, ¢ and d will be a molecule a—b-—c—d. The educts must be of the appropriate classes A,
B, C. D, i.e. “a” must be an acid component (class A), “b” an amine (class B), “c” an aldehyde
or ketone (class C) and “d™ an isocyanide (class D).

The size of the product space is determined by the size of the educt classes Al, IBI, ICl and ID!.
Assume that the commercially available number of educts are like 1Al = 200, 1Bl = 200,

IC1= 150 and IDI = 20. According to formula (1) the resulting product space M will cover
M1 = AHBHCHIDI = 200-200-150-20 = 1.2 108 different products.

For a construction principle for Ugi-4CR libraries, let the members of the educt classes be
identified by ay, .... asgg. by .-.u bagg. €14 -+.0 €y50. d)s ..o dag. Furthermore let the sequence
m = a;—b—c|—d, represent a specific Ugi-4CR reference product. Then s = {(a, a3),

(al as ... (4200). (bl bz). (bl b2 bzoo). (C| (.‘2), (C| ... CXSO)' (dl dz), (dl dz dZO)} is a set
of generators of the group § = <s>, that covers all permutations concerning members of the
same class. Such permutations are for example & = (a; a,), as well as B = (a; asp)(b; b>) and
Y = (a> a3), but not t = (a; b)) nor p = (a; by)(b| a) because the molecules otom = ar—bj—
c1—dy. Bom = asg—by—c—d; as well as yorn = a;—b—c|—d| (= m) are valid in the sense
that the position “a” is always kept by a member of class A, “6” by B and so on. This is
definitely not true for wom = b;—a;—c;—d, nor for pom = ba——a»—-c,—a’,

As v shows, there are permutations that are valid but do not affect the molecule. These
permutations transpose members “within” the class itself. They are defined by the group
T= <{((12 a3). (az az... (1200). (bz b3). (b2 b3 bZOO)’ (C2 03). (Cz €3 ... C|50), (dz d3),
(dy dy ... dr)}>, i. e. the elements a, b, ¢ and d| are not involved.

Each left-coset o7 of T in § corresponds with exactly one molecule of the library. This means
the library is defined by the left coset space M = {aT | ae S}. The size of M is given by

Ml = 181717
= (AI-BIICIDIY / (A-1)(BI-1)!-(IC)- 1)' (IDI-1)!)
= [AIBICIDI
=1.2-108

A molecular library is defined by the coset space or any corresponding traverse (section 1.4.2).

2.2 Costs

The computer does not calculate all the elements of a group. Instead a so-called representation
matrix is built.[16][18] This is an upper triangle matrix of size nxn where n is the number of
elements to permute, in this case the number of educts. The process to construct a
representation matrix runs with quadratic time- and space-complexity respective the number n
of elements to permute.
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In the given example of the Ugi-4CR product space there are Al+BI+IC1+IDI = 570 educts to
distribute on the backbone which corresponds with a subset of 57, the set of all possible
permutations on 570 objects. '

To store S579 as a representation matrix you need 162.165 permutations instead of 570!
(=10'0°0). The representation matrix of §<&579 has 51.140 defined entries and T<S is only
50.599. Using this concept one can do membership tests with quadratic complexity and can
easily construct subgroups of already represented groups.

3 Applications of this Approach

In order to give an idea how the representation matrices look like and how the concept may be
applied, a rather small example is given. It bases upon an Ugi-4CR library each class having 5
members (5-5-5-5-Ugi-4CR library). Bigger examples can easily be handled by computers but
are not of the right size to be printed. ,

3.1 The Management of a 5-5-5-5-Ugi-4CR Library

The following example uses the Ugi-4CR with 5 compounds of each class. The 5 carboxylic
acids are responsible for filling the part R, of the Ugi-4CR-backbone (Fig. 7) with the
molecular rests 1, 2. 3, 4 and 17. The numbers are arbitrary but unique. The 5 aldehydes are
filling part R, of the Ugi-4CR-backbone with the molecular rests 5,6,7,8and 18. The 5
amines are filling part R, of the Ugi-4CR-backbone with the molecular rests 9, 10, 11, 12 and
19. And the 5 isocyanides are filling part R, of the Ugi-4CR-backbone with the molecular rests
13, 14, 15, 16 and 20. One expects 5 = 625 different products.

Each of the resulting Ugi-products is represented by a sequence a—b—c—d, whereae {1, 2,
3,417}, be {5.6,7.8,18}.ce {9,10, 11,12, 19} andd € {13, 14, 15, 16, 20}. One of the
products is given by the sequence {7—18—19—20. This shall be the reference product. The
other products can be received by replacing 17 by 1, 2, 3 or 4, replacing 18 by 5, 6, 7 or §, etc.
The resulting set of permutations is ¢ = ((17 4), (17 3),(172), (17 1), (18 8), (18 7), (18 6),
(18 5). (19 12), (19 11), (19 10), (19 9), (20 16), (20 15), (20 14), (20 13)} and all their
combinations.

By combining the permutations of set g you can describe all the different products of the
library. Unnecessarily, many of the permutations represent the same product, because some of
the combinations result in permutations that do not affect the reference product. As for
example the permutation (1 2) that results from the combination (1 17)e(2 17)e(1 17). These
duplicates may be handled mathematically: The set of all combinations of permutations of set
g forms the group G = <g>. G has 5% = 207°360'000 members. The subgroup U<G that results
from all possible combinations that do not affect the reference isomer is generated by
U=<{(12),(23).(34),(56).(67).(78),(910), (10 11), (11 12), (13 14). (14 15),

(15 16)}>. U has 4!* = 331°776 members.

In the above example the index of Uin G is IGl / 1U1 = 5141 41* = 5* = 625. The left-coset space
of U in G is the family of sets {yU | ye G}. For any Ye G the left-coset YU describes exactly one
member of the library. For example the left-coset (1 17)(5 6)(12 19U contains the permutation
(1 17)(12 19), so it represents the product 1—18-—12—20. There is no other product
represented by this left-coset and no other left-coset representing the product. Any traverse of
the coset space defines the complete library. Naturally not the traverse is calculated but the
representation matrices of G and U (Figures 8 and 9).
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3.2 Program behaviour

The group G is generated by the set of permutations g={(174),(17 3). (172), (17 ‘1). (18 8),
(187), (18 6), (18 5), (19 12), (19 11), (19 10), (19 9), (20 16), (20 15), (20 14), (20 13)}. The
representation matrix of group G is of dimension 20:
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Fig. 8: Group G generated by 16 permutations contains ail permutations corresponding with the library

The members of the group are found by composing the permutations of the representation
matrix, taking exactly one permutation of each row. Each combination will give an unique
member. Consequently, the size of the group can be calculated by multiplying the numbers of
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defined matrix entries per row: 5-4.3-2-1.5-4.3.2-1.5-4.3-2-1.5-4.3-2-1- = 514 = 207°360°000.
The Pascal-implementation on an Apple Macintosh 8500/180 needs less than one second to
calculate the representation matrix out of the set of generators g.

0 @t | 329 | 4321 " ] fined; i
: i !
2 0 (32 | (432 {undefy ir | i “ o
3 0 | un : undetined ur :
. | ;
4 0 : : : ! undetoea!
b i i |
5 b 65 | (785 {(876S) : : !
‘ ; i
s ORI } fined v : oo
' i
: 3
7 | 0 87) |uncetined; uncetned undefined’
! | |
[ l 0 u ur
}
» ' 1] (09 jo 109 (121110 L undefined
4 H i 9
[ i 7 (1110 (121110) unaeh ur
| ‘ ' ’ ,
[ 11 s f i 2y fur !
' H f ! ! i
v H
17 i
! : ]
13 i ‘ i 0 (1413) {15141 (161514
? ! |- 13)
: ) ’ § , l [} {15 13) {16 1514)
| L i i
T ! i : 0 (16 15)
f i { !
i . 1]
" 2 3 ¢« i s ¢ ) 7 [} ) 0 | n f 12 13 14 1 0
. : i !
} L 1

Fig. 9: Group U generated by 12 permutations

The set of generators of group U<G is {(2 1), (3 2), (4 3),(65),(76),(87), (109), (11 10),
(12 11), (14 13), (15 14), (16 15)}. The corresponding representation matrix is of dimension
16. The group U has 4-3-2-1-4-3-2-1-4-3-2-1.4-3-2-1- = 41% = 331°776 members.

4 Discussion

Molecules (or ensembles of them) correspond with permutations. Families of permutational
isomers correspond with automorphism groups. The algebra of s- and r-vectors allows to
expand this approach onto sets of “isomeric” ensembles of molecules. In this sense MCR
libraries are isomeric to the set of educts. Thereby automorphism groups are useful for
representing families of permutational isomers as well as molecular libraries or any other
structured sets of molecules in an efficient way.

The structuring properties of group theory are useful for the efficient storage of chemical data.
The approach works for managing the data generated by combinatorial chemistry. Chemical
properties correspond with group-theoretic structures like cosets or subgroups. This structures
sets of molecules in a hierarchical manner. Thereby automorphism groups are useful for
representing families of permutational isomers as well as molecular libraries or any other
structured sets of objects in an efficient way.
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' A MODEL FOR COMBINATORIAL ORGANIC CHEMISTRY
Sherif El-Basil
Faculty of Pharmacy , Kasr El-Aini street
Cairo 11562 Egypt

ABSTRACT
The set of coset representations , CR’s , of a group G ,

{G(/GY) , G(/G2), .. G(/Gs)} Where G, ={I} ;G =G ; the marks , m; of subgroup
G; on a given G(/G) , 1 <i <s, and the subduction of G(/G;)) by G;j,j<i,
G(/G) V¥ G; , are essential tools for the enumeration of stereo isomers and their
classification according to their subgroup symmetry [Fujita ,S., Symmetry and
Combinatorial Enumeration in Chemistry , Springer - Verlag, Berlin 1991]. In this

paper , each G(/G;) is modelled by a set of coloured equivalent configurations,,
¥ = {h ,hy,..,h};r=|Gl/|Gi, (called homomers), such that a given homomer ,
h, , remains invariant only under all g € G; where g is an element of symmetry. The
resulting homomerAS' generate - the corresponding set of marks almost by inspection.
The symmetry relations among a set can I be conveniently stored in a Cayley - like
diagram [Chartrand , G, Graphs as Mathematical Models JPrindle , Weber and
Schmidt Incorporated, Boston , MA , 1977 , Chapter 10] , which is a complete

digraph on r vertices so that an arc from the vertex v; to the vertex v is coloured with

the set S;; of symmetry elements such that hi _Ei p hi gj€ Sj.
In addition , each vertex , v; is associated with a loop which is coloured with a set S;
so that g € Sj; stabilizes hi.

A Cayley- like diagram of agiven CR, H[G(/Gy)] leads to graphical generation of

G(/G;) ¥ G; for all values of j and also to all mj’s.
Several group- theoretxcal results are rederived and /or became more envisagable
through this modelling. The approach is examplified using C;, C3, Dz, T and D3

point groups and is applied to trishomocubane , a molecule which belongs to the Dy

point group.




L.Introduction and Background

Suppose a parent skeleton which belongs to a given point group, G, to be subjected
to a particular substitution pattern leading to a number of structures. Let G1=C\(={1})
» Gz, ..., Gy, be the sequence of representative subgroups ! , where G; = G. One may
ask : How many derivatives are there which belong to each subgroup ?

In the past few years Fujita has published a number of papers >° in which he
developed powerful group - theoretical methods which answer the above and such
questions. While conventional ’treatments consider linear representations and
character tables of groups '°, Fujita’s approach is based on coset representations,
CR’s , and table of marks. '' Namely, each element of symmetry, g € G applied to a
coset ‘of Gi; 1 i < s gives another coset and thus each element of G can be
considered as a certain permiutation of the cosets, leading to a representation of G in

terms of these permutations , called coset representations , G(/G)). Formally :

G(G)={ne|V g € G}; (1)
__( Ggi Gg: .. Gg ) @)
T\ Ggg Gmg .. Gagg K

In eqn (2) , r=|G|/|Gi, |G| = order of G. The mark m; of Gj on G(/G;), G; being
another subgroup of G, is the number of cosets left invariant (fixed) by G;. The set of
vertices of the molecular graph which undergoes substitutioh is called the orbit of
substitution. Essential to the treatment of Fujita is to classify the orbit which
undergoes substitution according to the CR which governs its substitution ¢, This orbit
is then subduced by all subgroups of the parent point group in order to obtain the
required structural counts which are expressed in the so-called isomer-count matrix'.
The subduction of a CR , G(/G;) by G;j is expressed by eqn(3) which is related to
eqn(1) by just attaching the subscript j to G in braces , viz. .
G(G) ¥ Gj={n;V|ge G} B )

The basic tools here (cosetS . marks . subduction tables etc... ) are indeed rather
abstract in nature and may not draw the attention of an organic chemist who benefits
most from the results of this algebra '>. Here we propose a graphical modelling of
mark and subduction tables of CR’s using “Cayley " - like colour graphs” * (see

below). Due to their diagrammatic nature , graphs are more appealing to chemists and

“or simply , Cayley diagrams . for brevity.




in addition the suggested graphical model rederives many of the group theoretical
results which are conventionally obtained using purely algebraic methods.
2. Modelling Coset Representations of Groups:

First a molecular graph is drawn which remains fixed under all of the symmetry

operations of 2. In FIG 1 several graphs are drawn which represent models of some

of the simpler point groups. The D, model is a tapered conformation of ethylene while
D; is a twisted ethane which is neither staggered nor eclipsed. The T point group
model is an adamantane molecule graph. Orbits of substitution are represented by the
(open) vertices of each graph. When all the vertices are opened the model is said
(here) to be “uncoloured” and by definition such a model represents the regular coset
representation, G(/G), since it remains fixed under all g € G. For the other CR’s,
G(/G)) ; 1 <1 <s oneis dealing with less symmetry operations , viz. , only those
which belong to G; and whence a particular “colouring” of the original model of
G(/G) is adopted so that the coloured graph remains fixed only under G;. Arbitrarily
the number of black ( =closed) vertices is chosen to be a minimum. Further , one must
search for all such coloured equivalent configurations which reproduce the

permutation properties for the cosets of G;. The chemical term for equivalent

configurations is homomers. For a given CR , G(/G;) this set will be denoted as [
- G(/Gi) ] where :
HGUG) 1= = {hyhy...0} e

in which h; is an i™ homomer and r is defined by eqn(2). To find hy € H [G(/G;)] we

apply all g’s € G; and express the result in cyclic notation ' such as (ab)(cdef)(...)
where the letters in parentheses refer to the labels of vertices of the orbit. Since h,
remains ﬁxed under G; it must yield the following “vertex-colour” identities:

_ a=b ; c=d=e=f, ... (5

We , then select just one such equality which involves the smallest number of

vertices and colour them in black. The resulting (coloured) configuration is
(arbitrarily) called hy;. The other , (r-1) , elements of the set / are deduced so that
they generate the same cyclic structures of the permutations representing G(/G;). In

Appendix 1, this is demonstrated for D3(/C;). FIG. 2 portrays sets of homomers
which model C; , C; and D, point groups.




FIGs 3 and 4 model all CR’s of D3 and T point groups respectively.

3.Modelling Marks of a Given G(/G;) Using /£ [G(/G))]

Firstly , one lists below each homomer the subgroups which leave it fixed and then
arrange the results in the form of a row vector the entries of which are the
representative ' subgroups of G ordered in a nonascending order , viz. ,
IG1] £ |Gzl £ .. £|Gd. InFIGs. 2-4 rows of marks from each CR are shown. The

above non ascending sequence is called sequence of subgroups , SSG.

4.Inter-relations Among a Set of Homomers

In order to further our knowledge of the properties of a set } [G(/G;)] , the inter-

relations among the individual members (homomers) can be outlined either

graphically or in matrix form.
4.1. Graphical Representation of J¢ :”Cayley ** - like Colour diagrams”
the set of r homomers {hy,h,,...,h.}= J which is associated with a given CR , G(/G;)

can be represented by a complete digraph (directed graph) on r vertices with arcs and

loops. Each arc say from h; to h; is “coloured” , so to speak , with a set of symmetry

elements , S, such that
NS N ..(6)
gi €Sy
each vertex , v; , is associated with a loop which is also coloured with a set of

elements , S; so that a given g; e S; stabilises h;. The resulting digraphs ,

Y [H (G/G;)] are reminiscent of “Cayley colour graphs” of groups '* . FIG. 5 shows
yley grap group

& graphs of CR’s of some point groups. We shall demonstrate that the ./ graphs .

contain information on:

a)Coset decomposition of G by G; ;-

b)Marks of G(/G;) ; and

c)G(/G) V¥ G; (c.f. eqn.3) for all G; of G; ; where G; is a subgroup of Gi.

Furthermore , the above information can be extracted almost immediately from these

digraphs.




4.2 Matrix Representation of M

If | [G(/Gy)]| is large (say >4 ) it may be more convenient to work with Y in its

matrix form , M[G(/G:)]. The matrix is defined as an r x r matrix whose diagonal and

off-diagonal elements are the sets S and Sj respectively (c.f. Section 4.1). FIG. 6

shows M matrices of several coset representations of some point groups.
4.3 Graphical Representation of eqn(3) : Subduced Representations
G(/G) ¥ G; is usually expressed as a sum of CR’s of G;, viz.,

G(/G) ¥ G;= 0 G(/Gy) + iG{(/Gy) +... (7
where Gy , Gy, ... are subgroups of Gjand the a’s are non-negative multiplication

factors.
The “subduction” set of equivalent configurations described above may be obtained

graphically by the following steps:
a) Find the Cayley-like colour graph of G(/G;), H[G(/G;)] as described in section

4.1.

b) an arc (or aloop)in H[G(/Gy)] is annihilated (i.e. pruned out ) unless one of its

colour components belongs to Gj, the subducing group.

c) The result of b) is in general , a set of disconnected #J’s of the general form
{ ’b[Gj(/Gk)] . ’Zj[Gj(/Gl)]-n} (9

where , in general , each component of the above set may be repeated o times [c.f.
eqn.(7)].

d) the result of subduction is obtained by comparing the resulting diagrams with those
shown in FIG. 5. FIG 7 illustrates such a graphical subduction of the CR : T(/C3) by
C; and by Gs.

Alternatively the set G(/G;) v G; might be obtained by subducing the matrix
M[G(/Gy)] in the following steps:

a) Annihilate from M[G(/Gp] all g ¢ Gjto give M[G(Gi) V¥ Gj]




b) If M[G(/G;) ¥ G;lis not already in block form , then apply to it the appropriate
set of row/column operations *° to transform it into block form. (The notation H;; (K;;)
= interchanging rows (columns) i and j). A general form of the matrix which results in

this step is given by:

[GiU/GY)] (0] (4) 0 \
0 [G(/G1] 0 4] : .(10)
\ 0 0 0 (GG )

where Gy, Gy, ..., Gy are subgroups of G;j.
c) The block matrix , (10), represents the disconnected Cayley-like colour graphs:

{ DIG(/GI] . VIGUG)] ... V[Gi(/Gm)] } -(11)

d) Then the matrix given by eqn(10) corresponds to the subduction expression given

by eqn.(7).

Example 1 ‘
T(C2) ¥ D; = Dy(/Cy) + Dy(/Cy’) + Dy (/C7) + .. ..(12)

We observe that | [T(/C2)]| = 6 and whence it is more convenient to work with

atrix forms, steps a)-d) are illustrated below:

{L.G} {C..C"} {CsarCan} {CsnCaar} {C0.C33  {C500Cl340}

{C.C.) {LC:} {C32,Caan} {Csa).Can} {C300C3a)  {C’32.C 33}

{C30.C3}  {Ca2,Cxa}  {LC.'} {C..G) {C33).Caap} {CnCsar}

{CanCls0} - {C30),Cha3}  {C2.C'} {L.C;'} {C30,Can} {CsnCaar}

{C32xCain} {C30).Cam} {C3,C30}  {C3.Ca}  {LG} {C..Cy}

{C:arCan}  {Cs2Caon} {C301C30}  {C33,C30}  {C2.C2} {LC.’}
M[T(/C,)]

Keeponlyg € D,

{LC:} (¢} O o} 0 0
{C..C) {1.Cs} 0 o - 0] o)

0 o} {1,C'} {C,.C27"} o) 0

0 0 {C,.C7") {L.Cy'} o} 0

o} 0 o) 0 {(LC:"} {C,.C")
0 0 o 0 {C,.Cr} {LC:)

M [T(/C2) ¥ D;]




[D,(/C)] 0, 0,
-~ 0, [D.(/C%)] 0,
0, 0, D,(/C”)]

M[T(/C;) ¥ D]
where O, is a 2 x 2 null matrix
In this example no row /column operations were necessary , i.e. the subduced matrix
was already in block form. The following example represents a more general situation
where one must apply a set of row/column operation to obtain the expression of the

subduced representation:

Example 2
T(Cy) ¥ Cs =2 C5(/Cy) ~(13)
Keep only { 0] {CGy} O OC éC’zm}
[T/Cy) ] ———p o {I} o {Cn} {Csm}
ge G {Csy O {I; o o) {Csy}
0] {Csxn} O {13 {Cy} O
0 {Cqy} O {Csnyy {1} 0]
{CGny O {Csny O 0 {I}
Kas, Kss [C5(/C)] 0;
—_— 0; [C3(/Cy)]
H23 > H35 )
An application of the model Find the isomer-count matrix of the following
substituted trishomocubane graph.
7 6
8 5 )
1 (*={CN})
3 ,
11 10

.. (14)
Trishomocubane is a caged compound which belongs to the Ds point-group"®
[cf FIG 1]. The compound can be envisaged from the fusion of six equivalent
cyclopentane rings (or three norbornanes). The parent (unsubstituted graph of this
molecule has three C; axes of symmetry each passing through a methylene carbon and
the center of an opposite edge: One C; axis passes through vertex 4 and edge joining
vertices 1 and 8, Another C; axes passes through vertex 7 and the bond joining

vertices 3 and 10. Finally a third C; passing through vertex 11 and the bond between




vertices 5 and 6. The molecular also has two Cs axes, each passes through vertices 1

and 9. Inspection of the graph shown in eqn. (15) reveals three orbits, viz.,

A1-{4,7,11}; (colored as open circles) . (15)

A subset of bivalent vertices.
A2-{1,3,5,6,8, 10} ; (colored as solid circles) ’ ... (16)

A subset of trivalent vertices each one is adjacent to two trivalent vertices and one
bivalent vertex.

A3 -{2,9} ; (colored as open triangles) .. (17

A subset of trivalent vertices, each vertex of which is surrounded by three trivalent
vertices.

FIG. 1 and 3 show how to model coset representations of D3 point group which lead
to a model of the mark table of this group in FIG. 8. The conventional (numerical)

from is given in Table 1.

Table 1
Mark table of D point-group
C C, G D3
Ds(/Cy) 6 0 0 0
Ds(/Cy) 3 1 0 0
D+(/ G5) 2 0 2 0
D3(/D3) 1 1 1 1

Now to define the coset representation which controls the orbit of substitution, A, in
this case, eqn (16), we apply the elements of symmetry of Ds to the vertices of A, and
count the number of fixed vertices under the effects of all subgroups: the rows of the

mark table of the full group (Table 1). These operations are shown below:




Cl C2 C3 D3

I - eGee® | ¥ ¥ N d
C; —  (1861035) v v
C, - (3 10) (15) (68) J
c;, - (5 6) (1 10) (38) J
Cs - (613)(5810) J J
C; -  (631)(5108) J 4
Cl C2 C3 D3

(6 0 0 0)

... (18)

Comparison of the vector generated in eqn. (18) with mark table, Table 1, indicates
that the orbit which controls substitution in A, is D3 (/C1) type. This is the CR which
must be subduced by the four subgroupsof Ds. The resulting USCI’s are outlined

below together with the corresponding generating functions adopting the weights:

w(C)=x wN) =y
LG = 5 = (x+y)f
1C — S, = (@+yY

1G -5 —» (+y)

2
1Dy = S = (*+Y)

An illustration of the subduction D3(/C;) ¥ C2 =3 Co(/C1)

. (19)
. (20)
S
. (22)

. (23)

The Cayley graph of the CR D3(/C,) has six vertices which represent its six homomer

models.This graph is too large to construct and then apply the pruning technique to

expand the required subduction . In this and similar situations

the matrix
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representation of CR is a more convenient method. The homomers of D3(/C;) shown

in FIG.3 transform to one another according to the following matrix:
. hy hy 'hs hs hs hg
hy {1 }{C} {C} {C”} {GCs } {C5)
hy G {I}{C}{C} {C} {C}
by | {C/}{C} {1 }{Cy} (Ca} (G2}

M[D;(/Cy)] = hs {7 (G} {C} {1 }{C}(Cy )
hs GG {C P {C Y { T} (G}
hs GGG {G (G {1}

.. (29)

To obtain the required expression for subduction (with C;) we kéep only those

elements of Cy( = {LC,}) in the above matrix and carry out the appropriate

row/column operations as shown below:

hy hy hs hs hs hs
hy [ 1 C;, 0 0 0 0
hef Cp I 0 0 0 0
i 0 I 0 C 0
i © 0 0 I 0 C, = M[D;(/C) { C3]
hs\ O 0 C: 0 I 0
he \_ 0 0 0 C; 0 I .. (25)
1.K4s
lz.H:,s
1C, 0000
Cz21 0000 C(/Cy) 0 0
00 IC00O0 = 0; C(/Cy) 0,
0, 0, Cy(/Cy)
00C, 100"
000 01 C
000 0C, I ... (26)

where Kj = interchange column i and column j while Hj; = interchange row i and row

J and 0 is a 2 x2 null matrix . Eqn.(26) , then corresponds to three C,(/C;)’s which is
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what one obtains using conventional coset algebra which requires both permutation

representations and mark tables of the subducing groups.

The resulting polynomials , eqns.(19)-(23),when expanded generate the following FP

matrix:

Table 2

Fixed-point matrix of the trishomocubane problem.

Xsy
x2y4
x4y2

X3 y3

P C C;
1 1
1 1
6 0
6 0
15 3
15 3
20 0

.

G
1

Ds
1

\

/

When the mark table is applied into Table 2 we obtain the desired isomer-count

matrix, shown below:

Table 3

Isomer-count matrix of the trishomocubane graph.

C

)}

G D;
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Where each star corresponds to a row from the mark table. The labelings of the stars

correspond to the heterocycles derived from this caged molecule. These are drawn in
FIG 9.

5. Modeling Algebraic Properties of Mark and Group - Subduction -Tables
S.1Properties of Marks
S.1.1 The row of marks of G(/G;) has the general form

(IG| O o) v . 0) (27)
where the number of O’s =|SSGJ|-1. This is because every loop in J[G(/G;)] is
coloured with just one component , viz. , C; and recalling that |G(/G))|=|G|=

|G[G(/G))]| the general form of row of marks given by eqn.(24) results.

S.1.2 The row of marks of G(/G) has the general form :
a 1 . -(28)
Where the number of 1’s = [SSG|. This property which one observes at the bottoms of

mark Tables results from the fact that J[G(/G)] has the general form of a single

vertex whose lobp is coloured with every subgroup of G. IL.e. , takes the general form:

v ? ...(29)

m; ={ ° .(30)

iff all the loops of J[G(/Gi)] are identically coloured with the same subgroups.

Examples are shown in FIG. 2 for Dy(/Cy) ; D2(/C’2) and D,(/C’*»).
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5.2 Properties of Subduced Representations
5.2.1 There are two dominant characters of the general sum given by eqn. (7) namely :
a)The number of homomers which represents (models) a given coset representation ,
G(/G)) , = the number of homomers which models a given subduced representation of
G(/G;) by one of its subgroups’ i.e.:

HGUGH]| = MGG VG -G
b) The two sets of homomers of eqn.(28) have identical transformation properties
under all g € G;ji.e. under all symmetry operations of the subducing groups.

These two properties may be modeled by considering for example:

T(/Cy) 403 = C4(/C,) + C5(/Cy) :C4={1,C5,C5}
, ¢ " \,
3 % 7N R
(7 ) < g) 5 K0
‘Invariant /
under C;
v A\

PAd fR p

CallCa) = ..(32
Invariant under C, =C4(/Cy)+C3(/Cy) (32)

Property a) is also understood using graphical subduction of the Cayley diagram
since the total number of vertices in the fragmented graph is preserved.
5.2.2 Subduction of the identity representation of a group leads to the identity
representation of the subducing group , i.e. ,

G(G) ¥ G; = G;(/G;) .(33)
This result is understood from the general form of the Cayley diagram of G(/G) .
being a single vertex the loop of which is coloured with all the subgroups of G. Then
subduction by G; leaves only the colour component G to give Gi(/Gi) , while in
general subduction by G; leads to a vertex whose loop is coloured by all the
subgroups of G; which corresponds to Gi(/G;) and so on. This property is modelled

below for the identity representation of the T point group.
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) | e
C4(/Cy) {C1C2C5D, T} C5(/Cy)
€..Ca | D {C1.C5.C,.C,".Dy}
Q C: (M {02
~— s
C,(/Cy) | D,(/D,) ...(34)
5.2.3 G(G) ¥ G;=1G{(/G)) .(35)

Here the Cayley graph of G(/G;) possesses loops which are coloured by C; only and
because C; is a common subgroup of all subgroups , the resulting subduced Cayley
graphs will also have loops which are coloured by C; only and therefore they will be
all identieally regular representations of the subducing group , i.e. Gj(/G)). And
because r = |G| /|Gj| , there will be r such 4[G;(/G1)].

5.2.4 G(G)) V¥ G, =|G|G1(/G)) ...(36)
Eqn(33) is understood from the fact that the Cayley graph #J[G(/G,)] contains |G

vertices , the loops of each of which is coloured with G, while the arcs with g ¢ G

Then subduction by G fragments it into |G| vertices each of which is nothing else
but G1(/G1).Eqns (35) and (36) are modelled below:

VG, g R § o § s, X § 1, 2
: 2 7 % (
e ' 2 ;
7/
1 2

r

ig Gy} G} Gy} g

G(Gy) 3G, ? Q Q - Q 8

1 2 r

where in the last eqn. r =|G|/|G)| = |G].
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5.2.5 G(UG) ¥ Gi=1 G(/G) ..-(38)
Iff all h; € X[G(/G;)] remain invariant under G;. '

In this particular case the loops of the vertices of 5{G(/G:)] are coloured with all the
subgroups of G; (because by assumption all r homomers of X[G(/Gi)] remain

invariant under all g € G;) and whence none of the arcs are coloured with any g € Gi.
Then subduction by G; generates r lonely vertices whose loops are coloured with all
subgroups of Gi , ie. by {SSG;} which is nothing else but r copies of the regular
representation of G;. This case is modelled below: ‘

N {SSG;
Ly N A Ss,
S 7

-~
SYON'
[

6 (SSG) {SSG) {SSG)
1 2 .

r

Y

...(39)
This property is exemplified in FIG. 10

* * *
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6.Discussion and Conclusions
Scheme 1 outlines the main feature of this work:
| Point Group G
2
Sequence of representative subgroups :{G,, G, ..., Gs}; G=G
v
Set of Cosets : {G(/G1), G(/G), ..., G(/G)}
v
Molecular graph which remains invariant under all g € G
~ Model of the regular representation , G(/G)
Vv
Colouring of the model of G(/G) so that it remains fixed
onlyunderge G;; 1 <i<s
| v

A set of equivalent (coloured) configurations (homomers)
for each G(/G;) ~ H[G(/G))].

v
Mark table € Cayley colour diagram for each G(/G;) = Subduction table

Scheme 1

Abstract description of a physical phenomenon remains a most precise and exact
description while a given model is always going to be approximate. C.f , the three
(popular) physical chemistry models of an ideal gas , ideal electrolyte and ideal
solution. However modelling usually carries both educational as well as theoretical
endeavours. In the present work several group theoretical properties are rederived or
became more easily envisagable through modelling. Namely , eqn. 3 which defines
subductions of a given CR and the concept of a mark : FIG.7 is a pictorial illustration
of eqn. 3. FIG. 8 portrays a certainly more appealing form of the mark table (of D3 as
an example ; c.f Table 1). We believe that the preparation of Cayley diagrams of
CR’s of the point groups of chemical interest is a worthy task and that such an
appendix in a text which deals with enumeration of chemical structures is at least as
important as appendices which contain mark tables , subduction tables and their

“predecessors” : Character tables !
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In conclusion , the model presénted here translates the three basic (and abstract)
alphabets used in the “enumeration journey” of Fujita, viz., coset , representation,
mark and subduction of a group into the language of graphs.The latter shall always
remain the more appealing for chemists,Indeed the present work extends an invitation
to organic chemists who would like to see organic chemistry from a theoretical
(computational) vent but who are also repelled by the (sometimes) offensive algebra
in their way.It may be convenient to end this paper by a parody of famous Greek myth
(Rex Warner , “Men and Gods” , Kenkyusha , Tokyo 1959)"7.

“An organic chemist demanded to know the riddle and the sphinx said : “What is it
that controls elements in a group, controls atoms in a compound and finally isomers in
organic chemistry ?” “Is it a coset representation or a mark ? replied the organic
chemist. The sphinx found that her riddle was at last answered and died as was fated.

The organic chemist received his award and he was made King of the heaven!
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Appendix 1

One - to one Correspondence between cosets of a given representation of a group and
the corresponding set of homomers illustrated for D3(/C;). The permutations resulting
from the effect of symmetry elements are outlined below:

D3(/C2) = CCy + GG + C,C5

1 2 3
C C, G C,

I 1 2 3 |(HGB) V V |
C, 1 3 2 (1)(23) v v
Cy 3 2 1 (13)(2) N
Cy” 2 1 3 (12)(3) v
G 2 3 1 (123) v v
Cy 3 1 2 (132) V v

—>rowofMarks: (3 1 0 0)
The following correspondences are observed : (c.f. FIG.3)

CzCz = {I,C2}~ hl .. (A—l)
CC3 = {C3,C2”} ~h ...(A—Z)
CC3={C3,C’} ~ s ..(A-3)

The elements of symmetry of D; generate identical cyclic structures when operate on
the homomers h; - h3

hy h, hs
1 hy hy hy (M@)3)
C, hy h3 h, (1)(23)
C hs h; hy 2)(13)
c, h, hy hs (3)(12)
Cs hy hy hy (123)
C’s hs hy h, (132)
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Figure Legends

Fig.1) Model graphs of five point groups. Some elements of symmetry are shown.
The (open) vertices represent orbits of substitution. The indicated graphs model
the identity coset representations , G(/G) of point groups.

Fig.2) Sets of homomers (equivalent configurations) which model coset
representations of C; , Cs and D, point groups. The indicated row vectors are
mark rowa corresponding to each coset representation. _

Fig.3) Modelling coset representations of Ds point group. The coloured graphs in
braces are homomers which generate the indicated mark rows.

Fig.4) Coset representation of T point group modelled by the appropriate set of
homomers along the corresponding mark rows. In all cases the set of homomers
which models G(/G;) remains fixed only under a symmetry elementsof Gi.

Fig.5) Cayley colour diagrams J[¥#(G/G:)] which represent coset representations of
several point groups. Both arcs and loops are coloured by appropriate (sub-)
groups. The number of vertices in each graph = the number of homomers which
model the corresponding coset representation. Mark rows are indicated. Observe
that when  G; = C;, J is a single vertex the loop of which is coloured with all
subgroups of G. When G; = G the size of § =|G|.

Fig.6) Matrix representations of coset representations of several point-groups ; c.f.
section 4.1.

Fig.7) Graphical modelling of eqn.(3) illustrated for T(/Cs) V G T(C) V¥ G,
through the use of the Cayley colour diagram of T(/C;).

Fig.8) A “graphical form” of the mark table of D;. The mark corresponds to a given
subgroup is the number of homomers drawn under this subgroup , where ¢ is an
empty set. Observe that h; € ¥[G(/G;)] remains invariant under any g € Gi ; g
being a symmetry element. The graphical form of mark table makes the
properties of marks more visible.

Fig.9) Heterocyclic derivatives derived from trishomocubane which corresponds to
Table 3 (the isomer-count matrix).
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(C ) ((c: Ca]
(€} M [C; (/C2)]

MIC; (/Cy)] . a D
(2 0)

{C}  {ov} |
( ) [¢c.. ¢}
(o}  {C} MIC, (/C))]
M [C, (/CD)] @ b
@ 0)

{Ci}
{C}
{847}
{84}

(

{S4. 547 {Cy, G}

{C:} {Sad {83
{Ci} {87} {S4
{Sa  {G} (G}
{81 {G} {Ci}

M [S: (/Cy)]
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Abstract

Two deﬁmtxons of the problem of graph drawing are considered
and an analytical solution is provided for each of them. The solu-
tions obtained make use of the eigenvectors of the Laplacian matrix
of a related structure. The procedures give good results for symmet-
rical graphs and they have already been used for drawing Fullerene
molecules in the literature. The analysis characterises precisely what
problems the two procedures are solving. It also illuminates why they
can perform unsatisfactorily on asymmetrical graphs.

1 Introduction

We consider the problem of embedding a graph on n vertices in Euclidean
space R¥, for k < n. Typically k would be 3 or 2. By posing the problem
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as minimising the squared norm of the appropriately weighted distance be-
tween adjacent points subject to natural normalising conditions we arrive
at a formulation of the problem for which the optimal solution can be sim-
ply computed in terms of the eigenvectors of the Laplacian matrix of the
(weighted) graph. For the case where the weights are chosen to be unity
the solution is independent of the uniform penalty given to non-adjacent
vertices. In this case and for regular graphs the technique has been applied
by Pisanski [9], who demonstrated that the generated drawings are partic-
ularly pleasing in the case of Fullerene graphs arising in chemistry. The
idea of using eigenvectors for drawing graphs was used first in chemical set-
ting for molecular orbitals; see [8]. A similar technique has been developed
by Bolla [2] for generating Euclidean representations of hypergraphs. For
distance-regular graphs with a second eigenvalue of multiplicity at least &
the embedding has interesting properties; see Godsil [4].

This paper demonstrates that a problem, that has been traditionally solved
by gradient descent techniques used to minimise a measure of poverty of
the generated embedding, affords an analytical solution which can be im-
plemented in an efficient deterministic algorithm [9]. At the same time it
reveals significant insights into the relations between embeddings of graphs
and the structure of the eigenspaces of their Laplacian matrices.

The Laplacian matrix has been used in graph embedding before in Tutte’s
straight line embedding of planar graphs {10, 11]. The approach presented
here is related but corresponds to solving the equation without boundary
conditions. The characterisation in terms of minimising the sum of distances
between vertices is also appropriate in Tutte’s case but subject to the chosen
cycle being fixed at the boundary, see also Becker and Hotz [1].

Use of eigenvectors to generate embeddings is not new. As early as 1980
Kruskal and Seery [6] devised a sophisticated method for drawing net-
work diagrams using a statistical technique called Multidimensional Scaling
(MDS) [5, 7] to arrive at a matrix whose eigenvectors could be viewed as
embedding vectors. The approach is closely related to that presented here,
but is not characterised in terms of a tightly defined optimization problem.

In Section 4 we discuss in detail the relationship between their method and
one of our techniques. It transpires that in certain special cases the solutions
obtained by the two methods are up to scaling factors identical. The main
advantage of our approach is the theoretical explanation in terms of the two
optimization problems which elucidates the strengths and weaknesses of the
two methods.




2 Notation and Known Results

Let A(G) = (Auy) be the adjacency matrix of a simple (positively weighted)
n-vertex graph G with no loops. Note that u, v are understood to be adjacent
iff Ayy > 0. For non-adjacent vertices Ay, = 0. Let D be the n x n diagonal
matrix with non zero entries

Dy, = Z Ay,
u:(u,v)EE(G)

the weighted degree of vertex v. The Laplacian matrix is defined to be
Q(G) = Q(A) = D — A, where A = A(G).

We summarise a few known results involving the Laplacian matrix. We will
number the eigenvalues of Q(G) given in ascending order: 0 = A; < A2 <
... < An, With corresponding eigenvectors j = el,e?,...,e", where j is the
all one vector, while 0 < Ay if the graph is connected. In addition for any
n-dimensional real vector & it can be verified that

zTQ(G)z = - Z Auy(zy — 24)° (1)
(uv)EEB(G)

3 Graph Drawing Problem and Initial Result

We pose the problem of embedding a graph G as finding a mapping
7:V(G) — R~

We will place constraints on this mapping in order to ensure that the rep-
resentation is natural and hopefully pleasing. We will denote by T; the
- n-dimensional vector formed by taking the i-th coordinate of 7(u) for all
u € V(G). Thus 7; is an n-dimensional vector indexed by the vertices of
the graph G. Our first requirement is that the centre of gravity of the rep-
resentation be at the origin. This implies that the vectors T; have average
entry 0, or 7; L j, for i = 1,...,k. The next constraint is that the scaling
in all dimensions be similar. This is ensured by requiring that

n

Il = 3 r(w? = 1.

u=l1

Note that throughout this paper the norm notation |f.|| will as here refer
to the 2-norm. Finally we would like the embedding to retain maximum
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information about the graph. An example of how information can be lost is
given when 7; = T; for some i # j, i.e. T; and 7; are maximally correlated.
In this case we have effectively reduced the dimension of the representation
by one. Hence maximal information will be represented if the vectors have
zero correlation, ie. 7; L 74, for i # j. We require adjacent vertices to be
close together weighted according to Ay, (e.g. for different chemical bond
types the value might vary), and require non-adjacent vertices to be far
apart. Our definition of the graph drawing problem may therefore be stated
as follows.

Problem 3.1 Graph Drawing of an n-vertez graph G given by (weighted)
adjacency matriz A in R¥, k < n.

Find a mapping 7 : V(G) — RF, which minimises the following energy
function

Bir)= 3 Awlr@)-1@I*-8 Yl -1@)>

(u,v)€E(G) (u,v)#E(G)
subject to the constraints

“Ti" ='11 Ti—Lj, fori= 1,...,k
TilTj, for1<i<j<k,

where § is a positive constant controlling the strength of the force driving
non-adjacent vertices apart. =

Before proceeding, some further discussion of our problem definition is war-
ranted. Firstly, there seems to be some arbitrariness in the fact that we can
specify different ‘attractions’ between vertices but non-adjacent vertices are
all ‘repelled’ with equal force. We will show that the more general problem
created by allowing negative weights can also be solved using the techniques
derived for Problem 3.1.

Another aspect of the definition that is a little unsatisfactory is the require-
ment that the scaling be similar in all directions. Indeed we will see that the
method does not work well for highly asymmetrical graphs. In order to avoid
this artificial symmetrisation we propose the following second definition of
the graph drawing problem albeit with a similar flavour to Problem 3.1.

Problem 3.2 Graph Drawing of an n-vertez graph G given by (weighted)
adjacency matriz A in R¥, k < n.




Find a mapping 7 : V(G) — Rk, such that the function
E(r)= Y Awlr@i-r@LlP-8 Y lr@)i-1@)l’ =1,

(u,v)EE(G) (u,v)€E(G)
for i =1,...,k, while maximising the sum of the norms
k
Ylwlr= 3 @I,
i=1 ueV(G)

subject to the constraints

Ti-l-j, fori:l,...,k
TilTy for1<i<j<k,

where 8 is a positive constant controlling the strength of the force driving
non-adjacent vertices apart. =

Note that this model allows the T; to have different norms, but specifies
that a unit length of ‘wire’ is available in each dimension to create the
model. Clearly changing the amount of wire simply has a scaling effect on
the solution, so that the problem is well-posed if the number 1 is replaced by
any constant. Note also that the requirement also implies that the amount of
‘wire’ used is the same for all directions since the norms are sums of squares
over the coordinates. This observation lends the definition a naturalness
that matches the definition of Problem 3.1.

We are now in a position to state our main result.

Theorem 3.1 Let G be a connected n-verter weighted graph with adjacency
matriz A. The graph drawing problem given in Problem 3.1 is solved by
taking the weighted graph with adjacency matriz B with entries

By, = { (A +B) if (u,v) € E(G)

10 otherwise

and computing the eigenvectors e',e?,...,e™ with corresponding eigenval-
ues 0 = A\; < Mg < ... < M\ of the Laplacian matriz Q(B). An optimal
embedding T is given by 7; = e'*!, i = 1,...,k and the minimal value of
E(r) is

k+1

Z A¢ — Bnk.
=2
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If Ags1 < Agyo then the optimal embedding is unique up to orthogonal trans-
formations in RE.

Corollary 3.1 In the case where the graph is not weighted (i.e. Ay, €
{0,1}), the optimal embedding does not depend on the parameter B.

Proof: If the graph is not weighted and has adjacency matrix A, then

= (1 + B)A. Hence the Laplacian matrices Q(A) and Q(B) also satisfy
Q(B) = (1+8)Q(A). This implies that they have the same eigenvectors with
the corresponding eigenvalues of Q(B) multiplied by a factor of 1+ 3. Hence
by the theorem the optimal embedding does not depend on the parameter

B.u

Proof of Theorem 3.1 First note that we can rewrite the energy function
E(7) as follows.

En)= 3 (Aw+Blr@)-1@IP -8 > Il -r@I* 2

(v,v)EE(G) . (v,v)EE(Kn)

where K, is the complete graph on the vertices of G with edges weighted 1.
If we consider the complete graph in equation (1), the following equality is
obtained for an n dimensional real vector .

eTQKn)z=aT(nl-Nz= Y (2u—2,)° (3)
u,veEV(Kpn)

where I is the n x n identity matrix and J is the n x n all I’s matrix,
ie. Ji = 1, for all 4,5. In general we have the following relation for an
embedding 7 and graph G with adjacency matrix A and its Laplacian matrix

Q(4).
Y Awlirw) - )

(u,v)EE(G)
k

= Y Auw ) (t(w)i —7(v)i)

(u,v)EE(G) i=1

k
=Y Y Aw(r(w)i —T():)?

=1 (u,v)€E(G)

k
=Y 71 Q(A)T;, (4)

i=1




by equation (1). Combining the results of equations (2), (3) and (4), we
obtain the following expression for the energy function E(7).

k
E(r) = 7T[Q(B) - B(nI — J)]; (5)
i=1

Let § = €l,...,e" be the eigenvectors of Q(B) with corresponding eigen-
values 0 = A; € Ay < ... < \,. Without loss of generality we may take
lle®]l =1 for i > 1, since eigenvectors are only determined up to their direc-
tion. Note that eigenvectors of a symmetric matrix are orthogonal and so
e’ L el for i #j. We have

[Q(B) = B(nI — J)]e' =0,
while for i > 1, ef L j and so
[Q(B) - B(nI - J)]e’ = (A - fn)e’.
Hence the eigenvectors of Q(B) are also eigenvectors of Q(B) — B(nl — J).
Expressing 7; in the eigenbasis, we have
n
Ti = Z ﬂfela
=2

where p} = 0 since 7; L j (j = e!). Hence we can write the energy of 7 as

Ek n
E(r) =33 (u)r - prk
i=1{=2
n k
=3 MY (uf)? - Bnk.
=2 =1

The condition 7; L 7; now becomes p; L p;, while the condition [I7;]| =1
becomes [|u;|| = 1. Since the u; can be extended to an orthonormal basis
matrix M for which M7 is also orthonormal we have

k
vi=3 () <1

i=1

with 7, v? = k. Hence, the minimum will occur when vZ=1for =
2,...,k+1and v? =0, for £ > k+ 1. This can be achieved by taking

7




it =1, =0,j#i+1,or 7 = e+l i = 1,...,k, as stated in the

theorem. Note that the minimum energy is

k+1

Z A — Bnk.

=2

If Ag+2 > Agy1, then we must have v7 = 0 for £ > k+1 for the minimum to be
achieved. This implies that yy,...,ux span the same space as €2, ..., e*+!
and can be obtained by an orthogonal transformation of these vectors. Hence
the optimal embedding is unique up to orthogonal transformation in R*. u

4 Applications and Further Results

We begin by addressing the problem touched on in the introduction con-
cerning the possibility of solving a problem for which the underlying graph
has negative weights.

Theorem 4.1 Let G be a connected n-verter weighted graph with some neg-
ative weights and adjacency matriz A. The graph drawing problem given in
Problem 3.1 is solved by taking the weighted graph with adjacency matriz B
with off-diagonal entries

B __{ (Auv+a+ﬁ) if(u:v) EE(G)
b " otherwise

where a = —min{Ay,|(u,v) € E(G)} > 0, and computing the eigenvectors

e',e?,...,e" with corresponding eigenvalues 0 = A\ < A < ... < A, of
the Laplacian matriz Q(B). An optimal embedding T is given by 7; = e**!,
i=1,...,k and the minimal value of E(7) is

k+1

z A¢ — Bnk — ak.

=2

If Ak41 < Apy2 then the optimal embedding is unique up to orthogonal trans-
formations in RF. '

Proof: The theorem follows from Theorem 3.1 and the observation that

Epta@-1)(T) = Ea(T) + ok,

8




which follows from the computations performed in the proof of Theorem 3.1.
Hence, a minimum embedding for A is also a minimum embedding for A +
a(J — I), while the minimal value of E(7) is ak less.

Hernce the procedure can also be used to find optimal embeddings of graphs
with negative weights as might occur in chemical bonds with different re-
. pelling strengths. .
A question which might naturally arise when considering a novel embedding
strategy is whether it is guaranteed to produce a 2-dimensional drawing with
no crossing edges when presented with a planar graph. For the algorithm of
Theorem 3.1, this turns out not to be the case as the simple counter-example
in Figure 1 shows.

Figure 1: Planar graph drawn with a crossing edge

The graph is C; (the cycle on 7 vertices) with two extra edges, (1,5) and
(3,7). The graph is clearly planar, but Figure 1 shows the result of applying
the algorithm of Theorem 3.1.

A good example of the kind of image generated by our method is given in
Figure 2 which is the embedding generated for the Buckminster fullerene in
R® using the 2nd, 3rd and 4th eigenvectors and taking a two dimensional
projection.




Figure 2: The Buckminster fullerene. The coordinates are determined by
the 2nd, 3rd and 4th eigenvector.

In our definition of the graph drawing task (see Problem 3.1), we require that
the drawing has normalised variance along the coordinate axes and that the
projections onto the coordinates are orthogonal. Together these constraints
imply that the drawing will have spherical symmetry in terms of its variance
along any axis, since along a (normalised) direction y = (y1,...,yx) the
variance is

k k
A wmlE = Sl
i=1 i=1

k
= Zy?:l
i=1

Hence, in a certain sense we are forcing the graph to “look spherical”. For
graphs with a naturally eccentric shape our method can break down. In
order to illustrate this effect, Figure 3 shows how the method draws the
Cartesian product of two paths P, X Pp,2 <n < m < 10 in R2. The rows
of the figure are indexed by n, while the columns are indexed by m — n.

Hence the leftmost column contains drawings of P, x Py, for n =2,..., 10,
while the top row contains the drawings of Py x P, for m = 2,...,10.
10




SOLLHBDO

Figure 3: The Cartesian product of two paths Pp X Pp,2 <n <m < 10,
where the coordinates are given by the second and third eigenvector of the
Laplacian matrix.

Note that the figures become degenerate when the difference between m
and n is too large and both the second and third eigenvalues are inherited
from P,,, causing each copy of P, to map to a point. The method fails
to work because the second harmonic in the longer direction corresponds
to a lower Laplacian eigenvalue than the first harmonic in the orthogonal
direction. If equality of these two eigenvalues occurs then a mixture of
the two ‘modes’ appears in one coordinate, otherwise the second coordinate
becomes a quadratic function of the first and the graph drawing collapses
onto a line. . -
In order to show that this problem is not only confined to simple ‘two-
dimensional’ graphs, we include a fullerene graph drawn using our technique,
which also possesses a degenerate image (see Figure 4). The graph shown
is taken from [8]. Although not immediately apparent from the figure the
three-dimensional coordinates of the vertices all lie on a parabolic (two-
dimensional) surface, though in this case no pair of vertices is actually given
the same coordinates. This explains why in this case a better image is
created by taking the 2nd, 4th and 5th eigenvectors, [8, 9], since the third

11




eigenvector is a harmonic of the second.

Figure 4: A fullerene on 60 vertices. The coordinates are determined by the
2nd, 3rd and 4th eigerivector.

We conclude this section by presenting a solution to the second Graph Draw-
ing Problem 3.2, which to a certain extent overcomes the enforced symmetry
implicit in Problem 3.1.

Theorem 4.2 Let G be o connected n-vertez weighted graph with adjacency
matriz A. The graph drawing problem given in Problem 8.2 is solved by
taking the weighted graph with adjacency matriz B with entries

B'_{Mw+m if (w,v) € E(G)
b otherwise

and computing the eigenvectors e',e?,...,e™ with corresponding eigenval-

ues 0 = A; < Ag < ... £ A\, of the Laplacian matriz Q(B). An optimal
embedding T is given by
1

VAiy1 — fn

Proof: Using the analysis of Theorem 3.1 we can write

Ti= etli=1,...,k

B(r) = 3 (e = Br)(ud)?,

=2
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where

Zu,e ,
and

Zunn —ZZ

£=2i=1
By the observation after the definition of Problem 3.2, the solution will be
invariant to orthogonal rotations. We may therefore assume that the 7; are
aligned with the eigenvectors eit! when projected into the subspace spanned
by €2,...,e**1. Hence, p! =0, for j #4i+1,5 < k+1. It is now clear that

k
Z ”7—1'"2,
i=1

is maximised by also taking pi' =0, for § > k+ 1, since the norm will
have to be smaller in order to have E(7;) = 1, after multiplying by larger
eigenvalues. Hence, the optimal solution is given by taking 7; = cie'*!. But
then

E(r) = (Np1—Bn)d =1,
1

N PR . A—
“ Vi1 — pn

as required.

The algorithm that is proposed in Theorem 4.2 has already been adopted
by Manopoulos and Fowler [8] with improved results for less symmetrical
graphs than the algorithm of Theorem 3.1.

If we apply the MDS method of Kruskal and Seery [6] to a graph which is
vertex transitive (i.e. has a group of automorphisms which acts transitively
on the vertices, ensuring the graph ‘looks the same’ from the viewpoint of
any vertex), the result will be that 7; is set to a different but related multiple
of e'*!. This follows from the fact that the MDS method acts as a uniform
procedure in this case together with the fact that the eigenvectors of the
adjacency matrix of a regular graph coincide with those of its Laplacna.n
matrix.

13




5 Conclusions

We have presented an analysis characterising two graph drawing procedures
that have been adopted by different researchers, principally for drawing
Fullerene molecules. The characterisation is pleasing in itself, but also
throws light on the performance of the procedures and in particular clarifies
when they are likely to perform well.

It is not clear how the results might be generalised if the norms used are
altered, either in the energy function or in the accompanying constraints on
the vectors 7;. It is likely that an analytical solution will not be possible in
this case.

A question that remains unresolved in our understanding of the application
of these methods, is a satisfactory way of determining when the eigenvec-
tors for the smallest eigenvalues are harmonics of those already used and
should therefore be discarded. Those using the methods have derived var-

ious heuristics but it would be useful to gain greater understanding of the
 factors involved.
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We propose characterizing of the cyclicity of molecular graphs by
considering their D/DD matrix. Each non-diagonal element of D/DD is a
quotient of the corresponding elements of the distance matrix D and the
detour matrix DD of a graph. In particular, we are using the leading
eigenvalue of the D/DD matrix as a descriptor of cyclicity and are
invesﬁgating for monocyclic graphs C, how this eigenvalue depends on the

number of vertices n, as n approaches infinity.




1. INTRODUCTION

The distance matrix D of (molecular) graphs has received considerable attention in

mathematical chemistry and has been well studied.!*2 The elements of the matrix are

the distances dij , where dij stands for the number of edges on the shortest path between

vertices i and j. The sum of the elements above the main diagonal in D gives the Wiener

number,3’ 4

a well-known graph invariant of interest in structure-property correlations.
The detour matrix DD of graphs, although suggested in the mathematical literature
some time ago,5 has only recently received attention in mathematical chemistry .6"0 The
elements (DD)ij of the detour matrix are the length of the longest path between the
vertices i and j considered. It is interesting to observe that different graphs can have
identical detour matrix (when vertices are suitably labelled), the first instance of the
situation in graph theory that non-isomorphic graphs are represented by an identical

matrix. 1

1.1 D/DD Matrix

Construction of novel matrices and novel graph invariants by using quotients of
matrix elements of two different matrices or two different invariants, respectively, has
been introduced in chemical graph theory only relatively recently.lz'21 An example is
the matrix whose (i, j) elements are obtained as a quotient between Euclidean and
topological (graph theoretical) distance between vertices i and j. In this case the leading
eigenvalue apparently offers a measure of folding (bending) of the long chain.22

Recently, a new graph matrix, the D/DD matrix, has been introduced.?3 Its
diagonal elements are by definition equal to zero and off diagonal elements are given as
a quotient of the corresponding elements of the distance matrix D and the detour matrix
DD. Note, although the DD matrix can be identical for non-isomorphic graphs, the
distance matrix D is different for them and consequently the D/DD matrix has to be
different for them as well. It has been suggested that the D/DD matrix might offer a

novel characterization of cyclic structures.?3 In particular its leading eigenvalue has




" been put forward as an index of cyclicity of a graph.

Cyclicity as well as branching are concepts that have been widely used in chemistry
in a qualitative fashion. Attempts to assign to such concepts a numerical magnitude
have resulted in different definitions for these quantities that are difficult to define. In a
way, the prevailing definition is one that has been found useful, either in the
characterization of a model or because it leads to a further development of the field. To
illustrate the aforesaid let us recall of alternative generalizations of the Wiener number,
the well-known graph invariant which was defined initially only for trees, to cycle-
containing systems.w'16 Similarly any definition of cyclicity will be to a degree
arbitrary, hence the intention is to come up with a definition that will quantify cyclicity
and involve as little as possible non structural arbitrary choices. In order to achieve such
a goal we should better understand the cyclicity of simple structures first. Having that in
mind we had decided to examine more closely characterization of monocyclic systems.
Therefore, we examined how the leading eigenvalue of D/DD varies with n, the size of

the cycle graphs, C,,, representing simple monocyclic structures.
2. MONOCYCLIC SYSTEMS

Small monocyclic systems Cp, , n =3 - 8 are illustrated in Figure 1. Cycle graphs,
Cp, are vertex and edge transitive’ leading to adjacency matrices in which each row
can be obtained from the first row by a cyclic permutation. The same applies to the
distance and detour matrices of C, and consequently to the D/DD matrix of Cp, as well.
Hence, cycle graphs have simple D/DD matrices. In each row of D/DD of an odd cycle
Cai+1 every element appears twice except the diagonal element (Table 1). In case of
even cycles Cak42 in each row of D/DD the largest element and the diagonal element
appear once whereas the remaining elements appear twice (Table 2). As it is known
from linear algebra24 the leading eigenvalue of a symmetric matrix is bounded from

above and from below by its largest and smallest row sum, respectively.




In case of vertex transitive graphs, the two sums are equal, hence for C,, the leading
eigenvalue of D/DD equals any row sum. Because the elements of the D/DD matrices
of monocyclic systems have such a simple structure it is not difficult to write down the

explicit expressions for their row sums, Uy, :

 nl
2
k .
2 2 p— if n odd |
k=1
Un=< | - M
4.
1+ 2 k if n even
n-k
" k=1

In Table 3 we have listed the values of the row sums U,, of C,, for smaller values of n. It
is easy to see that if n increases to infinity then the row sums U, also increase
indefinitely, even though the increments in each step are getting smaller. In this respect
the Uy, sums are reminiscent of the harmonic series which is divergent, but at very slow
rate. As it is known, the difference between the harmonic series and the logarithmic
function of n leads to the Euler constant ¥ (y = 0.5772...). The sequences built from the
non zero elements of the first row of D/DD matrices may be also of some interest in
mathematics. Consider, for example, first few non zero matrix elements of D/DD for

the cycle Cyj (shown in Table 1) and Cy3 (shown in Tabvle 2):

1 2345 1 23456

b

We can observe some resemblance of these sequences with the corresponding harmonic

sub-sequence

In the next section we consider the asymptotic behavior of U,,.




3. ON THE CONVERGENCE OF NORMALIZED ROW SUMS

The cyclicity constant W, has been defined in this journal, ref. 23, as the
normalized row sum W, = U, /n. The denominator makes the corresponding series
convergent. Table 4, and in particular its lower part, indicates that the normalized row
sum converges as n—oo, and that the convergence is slow. For instance, for n = 20 two
digits, for n = 100 three digits, and for n = 25000 only eight digits of the limiting value
W when n—co are reproduced. Moreover, the normalized row sums W, for odd n and
even n give a lower and an upper bound of W, respectively.

To calculate W with the aforementioned accuracy demands a lot of computations
owing to the slow convergence of W,. Hence, the question arises can the limit be
calculated analytically to even higher accuracy. The answer is affirmative since we have

found out an expression making this possible. Its derivation shall be stated here.

Let us define
mn= — 2)
k=1 ) :

Using S, » one can write:

r  nl
2
2 k
szn-k =2S’L1,n , for odd n
k=1 2
W, =< ©)
L.
1 2§ & 1
- p— =7+25_,%-1’n , for even n
. k=1

lm k 1m m 1 n-m
= — —— k-n+n_ m - m, 1
Sn= v T ‘";7.“/?“"7+Zn-k“";+27 @
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- and by shifting the summation index it can be transformed into:

n-1
Spn =-+ -tl-=-7m+{H(n ~-1)-H(n -m- 1)} . ®

t=n-m
where H(n) is the sum of the initial n terms of the harmonic series:
H(n)=1+l+-1—+---+l ©6)
2 3 n

Sm,n has been represented above as a telescopic sum in which the corresponding

members of the two harmonic series that diverge will cancel each other. Formally, we

wt

can introduce log n function in order to convert the divergent harmonic sequences to

convergent sequences:
S = -—Z—’+ {H(n-1)-log(n- D} -{H(n - m - 1) + log(n - m - 1)}
+{log(n - 1) - log(n - m - 1)} 7
It is well-known that
lim [(H(m) - logn)] =, ®)

where y= 0.5772156649... is the Euler constant.

For large value of n the cyclicity constant W, is approximately equal to 2S,/; , , being

given by the expression
Swz,n == +{Hn - 1)~ log(n - 1)} - {H(w'2 - 1) + log(n/2 - 1)}

+{log(n-1)-log(n2-1)} . 9)
Finally, we obtain the sought-after limit W in a closed form:

W= limW,=2lims,, . =2(-172+7-y+{log(n - 1) - log(n/2 - 1)}

. n-1
=-l+2lmlog T

=2log2 - 1 =0.38629436112.... (10)




The advantage of this analytical result for the cyclicity constant of cycle graphs C,,
as n tends to infinity is apparent. For instance, in computations for Table 4 we needed
2000 terms to obtain accuracy of about one part per million, because of the slow
convergence of the original series. However, if we use the analytical expression it is
possible to obtain additional significant digits of W without difficulty. As a
mathematical curiosity we note that the Euler constant y does not appear in the

expression for W contrary to what one would expect.
4. ON THE INTERPRETATION OF THE CYCLICITY MEASURE W,

In Table 4 we listed the difference between W, for adjacent n values. As n increases
the difference is decreasing and tends to zero. In order to arrive at an interpretation of
Wy we have to consider what other structural elements of C,, approach zero as n tends to
infinity. The curvature, which is in case of circle given by 1/R, tends to zero as R
increases, i.e., as finite segments of circle approach line. W, is independent of the
geometrical scale, thus it cannot have relation to the curvature. We may, however,
consider a discrete analogue of curvature defined by the angle 6, between the sides of a
regular n-gon. In contrast to the concept of curvature in geometry which is scale-
dependent (see Figure 2) now curvature is scale-independent. Thus, for example,
curvature of all hexagons of Figure 2 is constant, while that of concentric circles
decreases as R increases.

Discrete curvature is a measure of departure of an n-gon from circle. Clearly, as n
increases the difference between n-gon and circle decreases (which has historically been
the basis for the early calculation of &t ). Thus we can take the difference W, -W (given
in Table 5) as a measure of "smoothness" of discretized circles.

An alternative approach is to consider instead of W,, the quantity W, /n (see Table

5). This quantity has an advantage over W, , and the difference W, -W that it does not

e ot
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" alternate with even/odd parity changes, but as we see from Table 5 it monotonically

decreases as n—oo. Clearly W, /ncan be taken as a measure of the "smoothness " of
discretized circles.

The above interpretation answers a number of questions that could be raised when
considering numerical characterization of cyclic structures. It is clear now why the
convergence of Wy is so important. It is not merely a matter of computation, but the
approach offers a basis for measuring the "smoothness" of discrete curves. We hope that
more light will be brought on characterization of cyclicity by extending the present

work to polycyclic systems.
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FIGURE CAPTION

Figure 1. Small monocyclic graphs C, ,n=3,4,5,6,7,8.

Figure 2. Continuos and discretized circles of increasing radius.
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Table 5.

Alternative measures of "smoothness" of descretized n-circles

n Wn -Ww Wn In
3 - 0.05296102779 011111111111
4 0.03037230555 0.10416666667
5 - 0.01962769445 0.07333333333
6 0.01370563888 0.06666666667
7 -0.01010388493 0.05374149660
8 0.00775325838 0.04925595238
9 - 0.00613563096 0.04223985891
10 0.00497548015 0.03912698413
11 -0.00411542894 0.03474353929
12 0.00346032864 0.03247955748
19 -0.00138313372 0.02025848565
20 0.00124844523 0.01937714032
29 - 0.00059417769 0.01330000633
30 0.00055524760 0.01289498696
39 - 0.00032862318 0.00989655738
40 0.00031240247 0.00966516909
99 -0.00005101260 0.00390144796
100 0.00004999750 0.00386344359
499 - 0.00000200802 0.00077413297
500 0.00000200000 0.00077259272
999 - 0.00000050100 0.00038668054
1000 0.00000050000 0.00038629486
1999 - 0.00000012512 0.00019324374
2000 0.00000012500 0.00019314724
4999 - 0.00000002001 0.00007727432
5000 0.00000002000 0.00007725888
9999 - 0.00000000500 0.00003863330
10000 0.00000000500 0.00003862944
24999 - 0.00000000080 0.00001545239
25000 0.00000000080 0.00001545177




